Integrals of general measurable functions

If f is measurable, then both $f^+ = \max(0, f)$, $f^- = \max(0, -f)$ are measurable, and $f = f^+ - f^-$, $|f| = f^+ + f^-$. If $\int f^+ d\mu < \infty$ or $\int f^- d\mu < \infty$, then $\int f(\omega)d\mu(\omega) = \int f(\omega)\mu(d\omega) = \int f d\mu = \int f^+ d\mu - \int f^- d\mu$. This is called definite integral of f.

Definition: f is integrable if $\int |f| d\mu < \infty$.

In this case, $\int f^+ d\mu + \int f^- d\mu = \int |f| d\mu < \infty$. So f is integrable if and only if both $\int f^+ d\mu$ and $\int f^- d\mu$ are finite.

Result: f has definite integral and $f = g$ a.e. \Rightarrow $\int f d\mu = \int g d\mu$.

Proof: $f^+ = g^+$ a.e., $f^- = g^-$ a.e. So $\int f^\pm d\mu = \int g^\pm d\mu$.

Theorem: Suppose f, g are integrable

i) $f \leq g$ a.e. $\Rightarrow\int f d\mu \leq \int g d\mu$.

Proof: $f \leq g$ a.e. $\Rightarrow f^+ \leq g^+$ a.e., $g^- \leq f^-$ a.e. As $\int f^+ d\mu \leq \int g^+ d\mu < \infty$, $\int g^- d\mu \leq \int f^- d\mu < \infty$, we have $\int f d\mu \leq \int g d\mu$.

ii) **Linearity:** a and b finite real numbers, then $(af + bg)$ is integrable and $\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$.

Proof: $af + bg$ is integrable as $|af + bg| \leq |a||f| + |b||g|$. For $a > 0$, $\int a f d\mu = \int (af)^+ d\mu - \int (af)^- d\mu = a \int f^+ d\mu - a \int f^- d\mu = a \int f d\mu$.

Similarly for $a < 0$. So enough to prove the result for $a = b = 1$.

Note that $(f + g)^+ - (f + g)^- = f + g = f^+ + g^+ - f^- - g^-$ implies $(f + g)^+ + f^- + g^- = (f + g)^- + f^+ + g^+$.

As these functions are all non-negative, $\int (f + g)^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int (f + g)^- d\mu + \int f^+ d\mu + \int g^+ d\mu$. A rearrangement of this completes the proof.

iii) $|\int f d\mu| \leq \int |f| d\mu$ and $\int f d\mu - \int g d\mu| \leq \int |f - g| d\mu$.

Proof: By i), ii), $-|f| \leq f \leq |f|$ $\Rightarrow -\int |f| d\mu \leq \int f d\mu \leq \int |f| d\mu$.
Examples

(a) $\mathcal{F} = \text{all subsets of } \Omega = \{1, 2, \ldots \}$ and μ is the counting measure. A sequence $\{x_n\}$ of real numbers can be considered as a measurable function f, $f(n) = x_n$. So f is integrable if and only if the sequence $\{x_n\}$ is absolutely convergent. The sequence given by $x_m = (-1)^m \frac{1}{m}$ is not integrable.

(b) Ω, \mathcal{F}, μ as above. Let $f \equiv 0$, $f_n = I_{\{n, n+1, \ldots \}}$. Then $\lim_n f_n(m) \to f(m)$ for all m, but $\int f \, d\mu = 0$ and $\int f_n \, d\mu = \infty$ for all n.

(c) f is a Borel function, bounded on bounded intervals. Both $f_n = fl((-n, n))$, $g_n = fl((-n, n+1))$ converge point-wise to f. Even if the limits $\lim_n \int f_n \, d\lambda$ and $\lim_n \int g_n \, d\lambda$ exist, they may not be equal; e.g. $f(x) = x$.

(d) $f = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} I_{(k, k+1]}$ has no integral even though the $\lim_n \int fl((-n, n)) d\lambda$ exists.

(e) Let $f_n = n^2 I_{(0, n-1)}$, $f \equiv 0$. Then $f_n \to f$ everywhere, $\int fd\lambda = 0$ and $\int f_n \, d\lambda = n \to \infty$.

Convergence of Integrals

Does $f_n \to f$ a.e. imply $\int f_n \, d\mu \to \int f \, d\mu$? Not always (see (b), (e)).

Monotone Convergence Theorem: $0 \leq f_n \uparrow f$ a.e. \Rightarrow $\int f_n \, d\mu \uparrow \int f \, d\mu$.

Proof: There exists a measurable set A such that $\mu(A^c) = 0$ and $0 \leq f_n I_A \uparrow f I_A$. So $\int f_n \, d\mu = \int f_n I_A \, d\mu \to \int f I_A \, d\mu = \int f \, d\mu$.

Examples:

1. For each m, $0 \leq x_{nm} \uparrow x_m$ as $n \to \infty$ \Rightarrow $\lim_n \sum_m x_{nm} = \sum_m x_m$. (Examples 16.1, 16.3).
 False for decreasing limits. Let $y_{nm} = I_{\{m \geq n\}}$ and $y_m = 0$.
 Then $0 \leq y_{nm} \downarrow y_m$ but $\sum_m y_{nm} = \infty \neq 0 = \sum_m y_m$. (See (b)). (Toeplitz lemma)

2. $(\Omega, \mathcal{F}, \mu)$, \mathcal{F}_0 is a sub σ-field of \mathcal{F}. The measure μ_0 on \mathcal{F}_0 is the restriction of μ. f is measurable \mathcal{F}_0. Then $\int f \, d\mu = \int f \, d\mu_0$.
 Holds for $f = I_A$ for $A \in \mathcal{F}_0$. So holds for simple functions; increasing limits of non-negative f, and for all measurable functions f, where at least one of $\int f^+ \, d\mu$ and $\int f^- \, d\mu$ is finite.

3. $\int f \, d\mu = \sum_n \int f \, d\mu_n$ for $f \geq 0$ and μ, μ_n are measures, and $\mu(A) = \sum_n \mu_n(A)$, for $A \in \mathcal{F}$. (Example 16.5)
Theorem (Fatou’s Lemma): For $f_n \geq 0$,

$$\int \liminf_n f_n \, d\mu \leq \liminf_n \int f_n \, d\mu.$$

Proof: If $g_n = \inf_{k \geq n} f_k$, then $0 \leq g_n \uparrow g = \liminf_n f_n$.

So $\int f_n \, d\mu \geq \int g_n \, d\mu \rightarrow \int g \, d\mu$.

Theorem (Lebesgue’s dominated convergence theorem):
If $|f_n| \leq g$ a.e. for some integrable g and if $f_n \rightarrow f$ a.e., then f and f_n are integrable and $\lim_n \int f_n = \int \lim f_n \, d\mu = \int f \, d\mu$.

Proof: Since $g + f_n$ and $g - f_n$ are non-negative, Fatou’s lemma gives

$$\int g \, d\mu + \int \liminf_n f_n \, d\mu = \int \liminf_n (g + f_n) \, d\mu \leq \liminf_n \int (g + f_n) \, d\mu = \int g \, d\mu + \liminf_n \int f_n \, d\mu$$

and

$$\int g \, d\mu - \int \limsup_n f_n \, d\mu = \int \liminf_n (g - f_n) \, d\mu \leq \liminf_n \int (g - f_n) \, d\mu = \int g \, d\mu - \limsup_n \int f_n \, d\mu.$$

So

$$\int \liminf_n f_n \, d\mu \leq \liminf_n \int f_n \, d\mu \leq \limsup_n \int f_n \, d\mu \leq \int \limsup_n f_n \, d\mu.$$

Properties of Integrals

1. *The Weierstrass M-test for series*: Suppose for each m, $x_{nm} \rightarrow x_m$ as $n \rightarrow \infty$ and $|x_{nm}| \leq M_m$. If $\sum M_m < \infty$, then $\sum x_{nm} \rightarrow \sum x_m$.

2. *Bounded convergence theorem*: If μ is a finite measure and the f_n are uniformly bounded, then $f_n \rightarrow f$ a.e. implies $\int f_n \, d\mu \rightarrow \int f \, d\mu$.

3. If $f_n \geq 0$, then $\int \sum_n f_n \, d\mu = \sum_n \int f_n \, d\mu$. ($\sum_{n=1}^k f_n \uparrow \sum_n f_n$).

4. If $\sum_n f_n$ converges a.e. and $|\sum_{k=1}^n f_k| \leq g$ for some integrable g, then $\sum_n f_n$ and f_n are integrable and $\int \sum_n f_n \, d\mu = \sum_n \int f_n \, d\mu$.

5. If $\sum_n \int |f_n| \, d\mu < \infty$, then $\sum_n f_n$ converges absolutely a.e. and is integrable, and $\int \sum_n f_n \, d\mu = \sum_n \int f_n \, d\mu$.

6. Integral of f over a set is defined as $\int_A f \, d\mu = \int I_A f \, d\mu$. If A_1, A_2, \ldots are disjoint, and if f is either non-negative or integrable, then $\int_{\bigcup_n A_n} f \, d\mu = \sum_n \int_{A_n} f \, d\mu$.

If A_1, A_2, \ldots are disjoint, and if f is either non-negative or integrable, then $\int_{\bigcup_n A_n} f \, d\mu = \sum_n \int_{A_n} f \, d\mu$.

Definition: \(\{ f_n \} \) is uniformly integrable (u.i.) if

\[
\lim_{a \to \infty} \sup_n \int_{|f_n| \geq a} |f_n| \, d\mu = 0.
\]

If \(\sup_n \int |f_n|^\beta \, d\mu < \infty \) for some \(\beta > 1 \), then \(\{ f_n \} \) is u.i.

If \(\{ f_n \}, \{ g_n \} \) are uniformly integrable, then so is \(\{ f_n + g_n \} \). Use

\[
\int_{|f+g| \geq 2a} |f + g| \, d\mu \leq 2 \int_{|h| \geq a} h \, d\mu \leq 2 \int_{|f| \geq a} |f| \, d\mu + 2 \int_{|g| \geq a} |g| \, d\mu,
\]

where \(h = \max(|f|, |g|) \).

Theorem: Suppose \(\mu \) is a finite measure and \(f_n \to f \) a.e.

a) If \(\{ f_n \} \) is u.i., then \(f \) is integrable and \(\int f_n \, d\mu \to \int f \, d\mu \).

b) If \(f, f_n \) are non-negative and integrable, then \(\int f_n \, d\mu \to \int f \, d\mu \) implies \(\{ f_n \} \) is u.i.

Proof of a): Integrability of \(f \) follows from Fatou's lemma and

\[
\int |f_n| \, d\mu \leq a\mu(\Omega) + \int_{|f_n| \geq a} |f_n| \, d\mu.
\]

If \(\mu(|f| = a) = 0 \), then \(f_n \mathbb{1}_{|f_n| < a} \to f \mathbb{1}_{|f| < a} \) a.e. and by bounded convergence theorem

\[
\int f_n \mathbb{1}_{|f_n| < a} \, d\mu \to \int f \mathbb{1}_{|f| < a} \, d\mu.
\]

Use u.i.

Proof of b): If \(\mu(|f| = a) = 0 \), then \(\int f_n \mathbb{1}_{|f_n| \geq a} \, d\mu \to \int f \mathbb{1}_{|f| \geq a} \, d\mu \). The result follows as \(f \) is integrable.

Uniformly Integrability (continued)

Theorem: Suppose \(\mu \) is a finite measure, \(f, f_n \) are integrable and \(f_n \to f \) a.e. The following are equivalent:

i) \(\{ f_n \} \) is u.i.

ii) \(\int |f_n - f| \, d\mu \to 0 \)

iii) \(\int |f_n| \, d\mu \to \int |f| \, d\mu \).

Proof: i) implies u.i. of \(\{|f_n - f|\} \). So ii) follows by the above theorem.

ii) implies iii) as \(||f_n| - |f|| \leq |f_n - f| \).

i) follows from iii) using the theorem above.

Note: If \(|f_n| \leq g \) for some integrable \(g \), then \(\{ f_n \} \) is u.i.

\(f_n = (n/ \log n) l_{(0,n^{-1})}, \ n \geq 3 \) are u.i but not dominated by any integrable \(g \).
Let \(\{ f_t, t > 0 \} \) be a family of measurable functions and
\[\lim_{t \to \infty} f_t(\omega) = f(\omega) \] for \(\omega \in A \) and some measurable function \(f \),
where \(A \) is a measurable set and \(\mu(A^c) = 0 \). If \(|f_t(\omega)| \leq g(\omega) \) for
\(\omega \in A \) and \(g \) is integrable, then \(\int f_t \, d\mu \to \int f \, d\mu \) as \(t \to \infty \).

Theorem: Suppose that \(f(\omega, t) \) is measurable and integrable function of \(\omega \) for each \(t \in (a, b) \). Let
\[\ell(t) = \int f(\omega, t) \mu(d\omega). \]

(i) Suppose \(A \) is measurable, \(\mu(A^c) = 0 \) and for each \(\omega \in A \), \(f(\omega, t) \) is continuous in \(t \) at \(t_0 \); suppose further
\[|f(\omega, t)| \leq g(\omega) \] for \(\omega \in A \) and \(|t - t_0| < \delta \), where \(\delta \) does not depend on \(\omega \) and \(g \) is integrable. Then \(\ell \) is continuous at \(t_0 \).

(ii) Suppose \(A \) is measurable, \(\mu(A^c) = 0 \) and for each \(\omega \in A \), \(f(\omega, t) \) is differentiable in \((a, b) \) with a derivative \(f'(\omega, t) \);
suppose further \(|f'(\omega, t)| \leq g(\omega) \) for \(\omega \in A \) and \(t \in (a, b) \), where \(g \) is integrable. Then \(\ell \) has derivative \(\int f'(\omega, t) \mu(d\omega) \) on \((a, b) \).

Proof of (ii): By mean-value theorem, for \(\omega \in A \) and for some \(s \) between \(t \) and \(t + h \),
\[\frac{1}{h} [f(\omega, t + h) - f(\omega, t)] = f'(\omega, s) \quad \text{which} \to f'(\omega, t). \]

By dominated convergence theorem,
\[\frac{1}{h} [\ell(t+h) - \ell(t)] = \int \frac{1}{h} [f(\omega, t+h) - f(\omega, t)] \mu(d\omega) \to \int f'(\omega, t) \mu(d\omega). \]

Note: Condition on \(g \) can be slightly weakened. Enough to assume that for each \(t \), there is an integrable \(g(\omega, t) \) such that
\[|f'(\omega, s)| \leq g(\omega, t) \] for \(\omega \in A \) and all \(s \) in some neighborhood of \(t \).
Integration over sets

Recall that integral of f over a set is defined as $\int_A f \, d\mu = \int I_A f \, d\mu$. If f is non-negative, then $\nu(A) = \int_A f \, d\mu$ defines a measure on \mathcal{F}.

Theorem:

I. Suppose f, g are non-negative and $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathcal{F}$. If μ is σ-finite, then $f = g$ a.e.

II. f, g are integrable and $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathcal{F}$ \Rightarrow $f = g$ a.e.

III. If f, g are integrable and $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathcal{P}$, where \mathcal{P} is a π-system generating \mathcal{F} and Ω is a finite or countable union of \mathcal{P}-sets, then $f = g$ a.e.

Proof: Suppose $\int_A f \, d\mu \leq \int_A g \, d\mu$ for all $A \in \mathcal{F}$ (a).

If $A_n \in \mathcal{F}$, $A_n \uparrow \Omega$, $\mu(A_n) < \infty$, $B_n = \{0 \leq g < f, \; g < n\}$, then $\int_{A_n \cap B_n} (f - g) \, d\mu \geq 0$, and by (a), $\int_{A_n \cap B_n} f \, d\mu \leq \int_{A_n \cap B_n} g \, d\mu < \infty$. So $\int_{A_n \cap B_n} (f - g) \, d\mu = 0$, which implies $(f - g)I_{A_n \cap B_n} = 0$ a.e. Thus $\mu(A_n \cap B_n) = 0$ and hence $\mu(0 \leq g < f, \; g < \infty) = 0$. So $f \leq g$ a.e. This proves I.

If f, g are integrable, and (a) holds, then $\int I_{\{g < f\}} (f - g) \, d\mu = 0$ and hence $\mu(g < f) = 0$. This leads to II.

III follows from II and an earlier result.

Densities

A non-negative function δ is called the *density* of ν with respect to μ if $\nu(A) = \int_A \delta \, d\mu$, for all $A \in \mathcal{F}$.

Theorem: If ν has density δ with respect to μ, then $\int f \, d\nu = \int f \, \delta \, d\mu$ holds for all non-negative measurable f.

A measurable function g is integrable with respect to ν if and only if $g\delta$ is integrable with respect to μ, in which case for all $A \in \mathcal{F}$, \[
\int_A g \, d\nu = \int_A g \delta \, d\mu. \tag{*}
\]

Prove (\textasteriskcentered) for $g = I_B$, $B \in \mathcal{F}$, then simple functions, non-negative functions, and finally for integrable functions.
Scheffe’s Theorem

\(\nu, \nu' \) are two finite measures with densities \(\delta, \delta' \) satisfying \(\nu(\Omega) = \nu'(\Omega) \).

\[
\nu'(A) - \nu(A) = \int_A (\delta' - \delta) \, d\mu = - \int_{A^c} (\delta' - \delta) \, d\mu
\]

\[
2|\nu'(A) - \nu(A)| = \left| \int_A (\delta' - \delta) \, d\mu \right| + \left| \int_{A^c} (\delta' - \delta) \, d\mu \right| \leq \int |\delta' - \delta| \, d\mu
\]

\[
2|\nu'(B) - \nu(B)| = \int_B |\delta' - \delta| \, d\mu + \int_{B^c} |\delta' - \delta| \, d\mu = \int |\delta' - \delta| \, d\mu,
\]

for all \(A \in \mathcal{F} \), where \(B = [\omega : \delta(\omega) < \delta'(\omega)] \).

Theorem: Suppose that \(\delta, \delta_n \) are densities of \(\nu, \nu_n \) with respect to \(\mu \). If \(\nu(\Omega) = \nu_n(\Omega) < \infty \) for all \(n \), and \(\delta_n \to \delta \) except on a set of \(\mu \)-measure zero, then \(\sup_{A \in \mathcal{F}} |\nu_n(A) - \nu(A)| = \frac{1}{2} \int |\delta_n - \delta| \, d\mu \to 0 \).

Proof: Let \(g_n = \delta - \delta_n \). As \(0 \leq g_n^+ \leq \delta \), the dominated convergence theorem implies

\[
\int |g_n| \, d\mu \leq \int_{g_n \geq 0} g_n \, d\mu - \int_{g_n < 0} g_n \, d\mu = 2 \int_{g_n \geq 0} g_n \, d\mu = 2 \int g_n^+ \, d\mu \to 0.
\]

Change of Variable

\(T : (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}') \) measurable transform.

\(\mu T^{-1}(A') = \mu(T^{-1}A') \), \(A' \in \mathcal{F}' \).

If \(f \) is non-negative, then

\[
\int_{\Omega} f(T \omega) \mu(d\omega) = \int_{\Omega'} f(\omega') \mu T^{-1}(d\omega').
\]

A measurable function \(g \) is integrable with respect to \(\mu T^{-1} \) if and only if \(gT \) is integrable with respect to \(\mu \), in which case for all \(A' \in \mathcal{F}' \),

\[
\int_{T^{-1}A'} g(T \omega) \mu(d\omega) = \int_{A'} g(\omega') \mu T^{-1}(d\omega').
\]