Lebesgue measure is translation invariant on Borel σ-field

$\Omega = (0, 1]$. λ Lebesgue measure on the Borel σ-field \mathcal{B}.

$x \oplus y = x + y$ or $x + y - 1$ according as $x + y \in (0, 1]$ or not.

$A \oplus x = \{a \oplus x : a \in A\}$

$\mathcal{L} = \{A \in \mathcal{B} : A \oplus x \in \mathcal{B}$ and $\lambda(A \oplus x) = \lambda(A)$ for all $x \in \Omega\}$

Since $(A \oplus x)^c = A^c \oplus x$, \mathcal{L} is a λ-system containing \mathcal{I}.

By $\pi - \lambda$ theorem, $\mathcal{L} = \mathcal{B}$. Thus λ is translation invariant on \mathcal{B}.

λ^* is translation invariant

In fact λ^* is translation invariant on all subsets of Ω.

Let \mathcal{B}_0 be the Borel field generated by \mathcal{I}.

Thus for $A \in \mathcal{B}_0$, $A \oplus x \in \mathcal{B}_0$ and $\lambda(A \oplus x) = \lambda(A)$.

If $B \subset \bigcup_{i=1}^\infty A_i$, $A_i \in \mathcal{B}_0$, then $B \oplus x \subset \bigcup_{i=1}^\infty (A_i \oplus x)$. Hence

$$\lambda^*(B \oplus x) \leq \sum_{i=1}^\infty \lambda(A_i \oplus x) = \sum_{i=1}^\infty \lambda(A_i)$$

This implies

$$\lambda^*(B \oplus x) \leq \lambda^*(B).$$

As $B = (B \oplus x) \oplus (1 - x)$,

$$\lambda^*(B) = \lambda^*((B \oplus x) \oplus (1 - x)) \leq \lambda^*(B \oplus x).$$

Thus λ^* is translation invariant on all subsets of Ω.
The sets in $\mathcal{M} = \mathcal{M}(\lambda^*)$ are called Lebesgue measurable sets. λ^* (called Lebesgue measure) is a probability measure on \mathcal{M}.

If $A \in \mathcal{M}$, then $\lambda^*(AE) + \lambda^*(A^cE) \leq \lambda^*(E)$ for all $E \subset \Omega$.

For any $B \subset \Omega$,
\[(B \oplus x) \cap E = (B \oplus x) \cap ((E \oplus (1-x)) \oplus x) = (B \cap (E \oplus (1-x))) \oplus x).\]

It follows that
\[\lambda^*((B \oplus x) \cap E) = \lambda^*(B \cap (E \oplus (1-x))) \oplus x) = \lambda^*(B \cap (E \oplus (1-x))).\]

So $\lambda^*((A \oplus x) \cap E) + \lambda^*((A \oplus x)^c \cap E) \leq \lambda^*(E \oplus (1-x)) = \lambda^*(E)$.

Hence $A \oplus x \in \mathcal{M}$.

This establishes that the Lebesgue measure on \mathcal{M} is translation invariant.

Nonmeasurable set

Define $x \sim y$ if $x \oplus r = y$ for some rational $r \in (0, 1]$.

The relation \sim partition Ω into equivalence classes $\{A_\theta : \theta \in \Theta\}$.

H consists of exactly one point from each class A_θ.

Let Q be the set of rationals in Ω and $H_r = H \oplus r$.

Then $\bigcup_{r \in Q} H_r = \Omega$, and $H_r \cap H_s = \emptyset$ for $r \neq s$ in Q.

Further, if P is a translation invariant probability measure on all subsets of Ω, then

\[1 = P(\bigcup_{r \in Q} H_r) = \sum_{r \in Q} P(H_r) = \infty \cdot P(H_{1/2}).\]

Impossible!

There is no translation-invariant probability measure on all subsets of $(0, 1]$. Consequently, $\mathcal{M}(\lambda^) \neq 2^{(0,1]}$. There exists a non-Lebesgue measurable set.*
Let $L \in \mathcal{M}$, and \mathcal{B}_0 be the Borel field.

Get $B_{i,n} \in \mathcal{B}_0$ such that for each n,

$$B_n = \bigcup_{i=1}^{\infty} B_{i,n} \supset L \text{ and } \lambda^*(L) > \lambda(B_n) - \frac{1}{n}.$$

Note that $B_n \in \mathcal{B}$, the Borel σ-field, and λ is the extended Lebesgue measure on \mathcal{B}.

If $B = \bigcap_{n=1}^{\infty} B_n$, then $L \subset B \in \mathcal{B}$ and $\lambda^*(L) > \lambda(B) - \frac{1}{n}$ for all n. Thus $\lambda^*(L) = \lambda(B)$.

Similarly get $D \in \mathcal{B}$ such that $L^c \subset D^c$ and $\lambda^*(L^c) = \lambda(D^c)$.

As $L \in \mathcal{M}$, it follows that $\lambda^*(L) = \lambda(D)$.

It follows that $D \subset L \subset B$, $D, B \in \mathcal{B}$, and $\lambda(D) = \lambda^*(L) = \lambda(B)$. Note that $\lambda(B - D) = 0$.

Monotone Class Theorem

Definition: A class \mathcal{M} of subsets of Ω is called monotone class if it is closed under countable monotone limits.

That is, $A_i \uparrow A$, and $A_i \in \mathcal{M}$ implies $A \in \mathcal{M}$ and $B_i \downarrow B$, and $B_i \in \mathcal{M}$ implies $B \in \mathcal{M}$.

Theorem: If a monotone class \mathcal{M} contains a field \mathcal{F}, then $\mathcal{M} \supset \sigma(\mathcal{F})$.

Proof: Clearly, a monotone class which is a field is also a σ-field.

Let \mathcal{M}_0 be the smallest monotone class containing \mathcal{F}.

Note that $\Omega \in \mathcal{F} \subset \mathcal{M}_0$. Enough to prove that \mathcal{M}_0 is a field.

Let $\mathcal{M}_A = \{B \in \mathcal{M}_0 : A \cap B, A \cap B^c \text{ and } A^c \cap B \in \mathcal{M}_0\}$.

Clearly \mathcal{M}_A is a monotone class, and if $A \in \mathcal{F}$, then $\mathcal{F} \subset \mathcal{M}_A$.

Hence $\mathcal{M}_0 \subset \mathcal{M}_A$ by minimality of \mathcal{M}_0; consequently $\mathcal{M}_0 = \mathcal{M}_A$.

So for $B \in \mathcal{M}_0$ and $A \in \mathcal{F}$, $A \cap B, A \cap B^c$ and $A^c \cap B \in \mathcal{M}_0$.

Hence $\mathcal{F} \subset \mathcal{M}_B$ and again by minimality $\mathcal{M}_0 = \mathcal{M}_B$.

If $A, B \in \mathcal{M}_0 = \mathcal{M}_A$, then $A \cap B, A \cap B^c$ and $A^c \cap B \in \mathcal{M}_0$. Take $A = \Omega$ to conclude \mathcal{M}_0 is closed under complementation. Thus \mathcal{M}_0 is a field.

Example: $\Omega \neq \emptyset$, $\mathcal{P} = \{\emptyset\} = \mathcal{M}$.

\mathcal{P} is a π-system, \mathcal{M} is a monotone class, but $\sigma(\mathcal{P}) = \{\emptyset, \Omega\} \not\subset \mathcal{M}$.