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Nonparametric Mixture of Regression Models
Mian HUANG, Runze LI, and Shaoli WANG

Motivated by an analysis of U.S. house price index (HPI) data, we propose nonparametric finite mixture of regression models. We study the
identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically
study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed
to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic
sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical
analysis of the U.S. HPI data is illustrated for the proposed methodology.

KEY WORDS: EM algorithm; Kernel regression; Mixture models; Nonparametric regression.

1. INTRODUCTION

Mixture models have been widely used in econometrics
and social science, and the theories for mixture models
have been well studied (Lindsay 1995). As a useful class of
mixture models, finite mixture of linear regression models
have been applied in various fields in the literature since its
introduction by Goldfeld and Quandt (1973). For example,
there are applications in econometrics and marketing (Wedel
and DeSarbo 1993; Frühwirth-Schnatter 2001; Rossi, Allenby,
and McCulloch 2005), in epidemiology (Green and Richardson
2002), and in biology (Wang et al. 1996). Bayesian approaches
for mixture regression models are summarized in the article
by Frühwirth-Schnatter (2006). Many efforts have been made
to these models and their extensions such as finite mixture of
generalized linear models (Hurn, Justel, and Robert 2003).

Motivated by an analysis of U.S. HPI data in Section 5,
we propose nonparametric finite mixture of regression mod-
els. Compared with finite mixture of linear regression mod-
els, the newly proposed models relax the linearity assumption
on the regression functions, and allow the regression function
in each component to be an unknown but smooth function of
covariates. In this article, we consider the situation in which
the mixing proportions, the mean functions, and the variance
functions are all nonparametric ones. Under certain conditions,
we first show that the proposed model is identifiable. To esti-
mate the unknown functions, we develop an estimation proce-
dure via local-likelihood approach. Local-likelihood estimation
(Tibshirani and Hastie 1987) extends the idea of nonparamet-
ric kernel regression to likelihood-based regression models. Fan,
Heckman, and Wand (1995) studied local polynomial regression
in quasi-likelihood model. Aerts and Claeskens (1997) studied
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multiparameter local-likelihood model. Fan and Gijbels (1996)
gave a comprehensive account on this method.

For any estimation procedure of nonparametric functions,
it is desirable to estimate the whole curves over a set of
grid points. One may naively implement an EM algorithm
(Dempster, Laird, and Rubin 1977) by maximizing each of the
local-likelihood functions. However, the naive implementation
of the EM algorithm does not ensure that the component la-
bels match correctly at different grid points. This is similar to
the label-switching problem in previous applications of mixture
modeling (Stephens 2000; Yao and Lindsay 2009). To solve
the problem, we modify the EM algorithm to simultaneously
maximize the local-likelihood functions at a set of grid points.
We further show that the modified EM algorithm possesses
the monotone ascent property enjoyed by the ordinary EM al-
gorithm in an asymptotic sense. The modified EM algorithm
works well in our simulations and a real-data analysis.

The sampling properties of the proposed estimation procedure
are investigated. We derive the asymptotic bias and variance
of the local-likelihood estimate, and establish its asymptotic
normality. To select the number of components, we consider
implementing the information criterion approach. A bandwidth
selector is proposed for the local-likelihood estimate using a
multifold cross-validation (CV) method. We use a bootstrap
method to obtain the standard error of the resulting estimate. Nu-
merical simulations are conducted to examine the performance
of the proposed procedure and test the accuracy of the proposed
standard error estimation method. We further demonstrate the
proposed model and estimation procedure by an empirical anal-
ysis of U.S. HPI data.

The rest of this article is structured as follows. In Section 2,
we present the nonparametric finite mixture of regression mod-
els, and then derive the identifiability result. In Section 3, we
further develop an estimation procedure for the proposed model
using kernel regression and a modified EM algorithm. Model se-
lection problems are addressed in Section 4. Simulation results
and an empirical analysis of a real dataset are presented in Sec-
tion 5. Some discussions are provided in Section 6. Technical
conditions and proofs are given in the Appendix.
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2. MODEL DEFINITION AND IDENTIFIABILITY

2.1 Model Definition

Assume that {(Xi, Yi), i = 1, . . . , n} is a random sample from
the population (X, Y ). Throughout this article, we assume co-
variate X is univariate. The proposed methodology and theoret-
ical results can be extended to multivariate covariate X, but the
extension is less useful due to the “curse of dimensionality.” Let
C be a latent class variable. We assume that for c = 1, 2, . . . , C,
C has a discrete distribution P (C = c|X = x) = πc(x) given
X = x. Conditioning on C = c and X = x, Y follows a normal
distribution with mean mc(x) and variance σ 2

c (x). We further
assume that πc(·), mc(·), and σ 2

c (·) are unknown but smooth
functions. Hence, conditioning on X = x, Y follows a finite
mixture of normals:

Y |X=x ∼
C∑

c=1

πc(x)N
{
mc(x), σ 2

c (x)
}
. (2.1)

In this article, we assume that C is fixed, and refer to model
(2.1) as a nonparametric finite mixture of regression models
because πc(·), mc(·), and σ 2

c (·) are nonparametric. When C = 1,
model (2.1) is a nonparametric regression model. When πc(x)
and σ 2

c (x) are constant, and mc(x) is linear in x, model (2.1)
reduces to a finite mixture of linear regression models (Goldfeld
and Quandt 1973). Thus, model (2.1) can be regarded as a
natural extension of nonparametric regression models and finite
mixture of linear regression models. Although the component
distribution in Equation (2.1) is assumed to be normal in this
article, it is easy to extend our results to different parametric
families for the component distribution.

Huang and Yao (2012) studied a semiparametric mixture of
regression models with the mixing proportions being smooth
functions of a covariate. Their model assumes that given x and
Z = z, Y follows a finite mixture of normals:

Y |x,Z=z ∼
C∑

c=1

πc(z)N
(
αc + xT βc, σ

2
c

)
. (2.2)

The linearity assumption in each component allows for mul-
tivariate predictor x. This would remarkably widen the appli-
cation of model (2.2), since any smooth regression function
may be approximated by a linear basis expansion of derived
variables. However, a comprehensive study of nonparametric
mixture of regression models (2.1) is of great importance and
interest. Model (2.1) provides a general framework for mixture
models. When the predictor x is one-dimensional, and Z = x,
model (2.2) is a restricted version of model (2.1). Theoretical
study of identifiability shall offer justification for model esti-
mation, including the aforementioned methodology of basis ap-
proximation for smooth regression functions. Model (2.1) also
provides some guidelines for further research on more complex
mixture models, for example, mixture models with each com-
ponent being a varying coefficient model, or a nonparametric
additive model, or a partial linear model, etc.

2.2 Identifiability

Identifiability is a critical issue for most mixture models. The
identifiability of finite mixture distributions was studied in de-
tail in Section 3.1 of the literature by Titterington et al. (1985).

Hennig (2000) and section 8.2.2 of the literature by Frühwirth-
Schnatter (2006) investigated the identifiability of finite mix-
ture of regression models. There are useful related results, for
example, mixture of univariate normals is identifiable up to re-
labeling, and finite mixture of regression models is identifiable
up to relabeling provided that covariates have a certain level of
variability. To derive the identifiability result for model (2.1),
we first introduce the concept of transversality.

Definition. Let x ∈ R, and let a(x) and b(x) be two
smooth curves in R2. That is, a(x) = (a1(x), a2(x)), b(x) =
(b1(x), b2(x)), and ai(x), bi(x) are differentiable, i = 1, 2. We
say that a(x) and b(x) are transversal if ‖a(x) − b(x)‖2 +
‖a′(x) − b′(x)‖2 �= 0, for any x ∈ R.

The transversality of two smooth curves a(x) and b(x) implies
that if a(x) = b(x), then a′(x) �= b′(x). In other words, we im-
pose a condition that the mean and variance functions of any two
components cannot be tangent to each other. For more complex
structures, the identifiability issue deserves further considera-
tion (see the discussion in Section 6).

Theorem 1. Assume that: (i) πc(x) > 0 are continuous func-
tions, and mc(x) and σ 2

c (x) are differentiable functions, c =
1, . . . , C; (ii) any two curves (mi(x), σ 2

i (x)) and (mj (x), σ 2
j (x)),

i �= j , are transversal; and (iii) the range X of x is an interval in
R. Then model (2.1) is identifiable.

3. ESTIMATION PROCEDURE

3.1 Local-Likelihood Estimation

Denote by φ(y|μ, σ 2) the density function of N (μ, σ 2).
The likelihood function for the collected data {(Xi, Yi), i =
1, 2, . . . , n} is

L =
n∑

i=1

log

[
C∑

c=1

πc(Xi)φ
{
Yi |mc(Xi), σ

2
c (Xi)

}]
. (3.1)

Note that πc(·), mc(·), and σ 2
c (·) are nonparametric functions. In

this article, we will employ kernel regression for model (2.1).
Suppose that we want to estimate the unknown functions at x. In
kernel regression, we first use local constants πc, σ 2

c , and mc to
approximate πc(x), σ 2

c (x), and mc(x). Let Kh(·) = h−1K(·/h)
be a rescaled kernel of a kernel function K(·) with a band-
width h. The corresponding local log-likelihood function for
data {(Xi, Yi) : i = 1, 2, . . . , n} is

�n(π , σ 2, m; x)

=
n∑

i=1

log

{
C∑

c=1

πcφ
(
Yi |mc, σ

2
c

)}
Kh(Xi − x), (3.2)

where m = (m1, . . . , mC)T , σ 2 = (σ 2
1 , . . . , σ 2

C)T , and π =
(π1, . . . , πC−1)T . One may also apply local linear regression
or local polynomial regression techniques for the estimation
of πc(x), mc(x), and σ 2

c (x). Local linear regression has sev-
eral nice statistical properties (Fan and Gijbels 1996). However,
in our model setting, local linear regression does not yield a
closed-form solution for variance functions and mixing propor-
tion functions in the M-step of the proposed EM algorithm (see
Equations (3.7), (3.8), and (3.9) for more details).
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3.2 Asymptotic Properties

Let {π̃ , σ̃ 2, m̃} be the maximizer of the local-likelihood func-
tion (3.2). Then the estimates of πc(x), σ 2

c (x), and mc(x) are

π̃c(x) = π̃c, σ̃ 2
c (x) = σ̃ 2

c , and m̃c(x) = m̃c.

In this section, we study the asymptotic properties of π̃c(x),
σ̃ 2

c (x), and m̃c(x). Let θ = (πT , (σ 2)T , mT )T , and denote

η(y|θ) =
C∑

c=1

πcφ
{
y|mc, σ

2
c

}
, �(θ , y) = log η(y|θ).

Let θ (x) = {πT (x), σ 2(x)T , m(x)T }T , and denote

q1{θ(x), y} = ∂�{θ(x), y}
∂θ

, q2{θ (x), y} = ∂2�{θ(x), y}
∂θ∂θT

,

I(x) = −E[q2{θ(X), Y }|X = x], and

	(u|x) =
∫

Y

q1{θ(x), y}η{y|θ (u)}dy.

Let γn = (nh)−1/2, and for c = 1, . . . , C, denote

m̃∗
c = {m̃c − mc(x)} ,

σ̃ 2∗
c = {

σ̃ 2
c − σ 2

c (x)
}
.

For c = 1, . . . , C − 1, denote

π̃∗
c = {π̃c − πc(x)}.

Let m̃∗ = (m̃∗
1, . . . , m̃

∗
C)T , σ̃ 2∗ = (σ̃ 2∗

1 . . . , σ̃ 2∗
C )T , and π̃∗ =

(π̃∗
1 , . . . , π̃∗

C−1)T , and θ̃
∗ = {(π̃∗)T , (σ̃ 2∗)T , (m̃∗)T }T . The

asymptotic bias, variance, and normality of the resulting es-
timators are given in the following theorem. The proof is given
in the Appendix.

Theorem 2. Suppose that conditions (A)–(G) in the Appendix
hold. It follows that

√
nh{θ̃∗ − B(x) + o(h2)} D−→ N{0, ν0f

−1(x)I−1(x)},

where f (·) is the marginal density function of X, ν0 =∫
K2(u) du, and

B(x) = I−1(x)

{
f ′(x)	′

u(x|x)

f (x)
+ 1

2
	′′

u(x|x)

}
κ2h

2,

with κ2 = ∫
u2K(u) du.

3.3 An Effective EM Algorithm

For a given x, one may maximize the local-likelihood func-
tion (3.2) using an EM algorithm easily. In practice, we typically
want to evaluate the unknown functions at a set of grid points
over an interval of x, which requires us to maximize the local-
likelihood function (3.2) at different grid points. However, if
we naively implement the EM algorithm for each local model,
we may suffer a problem similar to the label-switching problem
of mixture models. Consider a two-component model with the
mean function of one component consistently above the other,
for example, solid lines in Figure 1(a). For any location x, a direct
maximization of Equation (2.3) yields two sets of estimates due
to label switching, that is, {m̂1(x), m̂2(x), σ̂ 2

1 (x), σ̂ 2
2 (x), π̂1(x)},

and {m̂2(x), m̂1(x), σ̂ 2
2 (x), σ̂ 2

1 (x), 1 − π̂1(x)}. Hence, for the
three locations uj−1, uj , and uj+1 in Figure 1(a), there are eight
possible configurations when we link the mean functions of the
two components, while only two of them match the true model
correctly. Directly maximizing Equation (2.3) at each location
does not ensure correctly matching of the components that one
lies consistently above the other. Based on our experience with
simulation study, the naive EM algorithm results in very wiggly
estimates for the mc(·) and σ 2

c (·). This implies that the naive EM
algorithm does not work at all.

In this section, we propose an effective EM algorithm to deal
with the issue. We first introduce component labels for each of
the observation, and define a set of local complete log-likelihood
with the same labels. In the E-step of the EM algorithm, we
estimate these labels. In the M-step, we simultaneously update

u(j−1) u(j) u(j+1)

y

x

No "label switching"
"Label switching"

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

x

y

mean of 1st component
mean of 2nd component

(b)

Figure 1. (a) An illustration of mismatching labels of naive implementation of EM algorithm. Solid curves are obtained when the labels at
uj−1, uj , and uj+1 match correctly. Dotted curves are obtained when the labels at uj does not match the ones at uj−1 and uj+1 correctly. (b) An
illustration of a complex structure with crossed mean functions.
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the estimated curves at all grid points for the same probabilistic
label obtained in the E-step. This ensures that the resulting
functional estimates are continuous and smooth at each iteration
of the EM algorithm.

In the EM framework, the mixture problem is formulated as an
incomplete-data problem. We view the observed data (Xi, Yi)s
as being incomplete, and introduce the unobserved Bernoulli
random variables

zic =
{

1, if (Xi, Yi) is in the cth group,

0, otherwise

and zi = (zi1, . . . , ziC)T , the associated component identity
or label of (Xi, Yi). The complete data are {(Xi, Yi, zi), i =
1, 2, . . . , n}, and the complete log-likelihood function corre-
sponding to Equation (3.1) is

n∑
i=1

C∑
c=1

zic

[
log πc(Xi) + log φ

{
Yi |mc(Xi), σ

2
c (Xi)

}]
.

For x ∈ {u1, . . . , uN }, the set of grid points at which the un-
known functions are to be evaluated, define a local complete
log-likelihood as

n∑
i=1

C∑
c=1

zic

[
log πc + log φ

{
Yi |mc, σ

2
c

}]
Kh(Xi − x).

Note that zic’s do not depend on the choice of x. In the lth cycle of
the EM algorithm iteration, we have m(l)

c (·), σ 2(l)
c (·), and π (l)

c (·).
Then in the E-step of (l + 1)-th cycle, the expectation of the
latent variable zic is given by

r
(l+1)
ic = π (l)

c (Xi)φ
{
Yi |m(l)

c (Xi), σ 2(l)
c (Xi)

}
∑C

c=1 π
(l)
c (Xi)φ

{
Yi |m(l)

c (Xi), σ
2(l)
c (Xi)

} . (3.3)

In the M-step of the (l + 1)th cycle, we maximize

n∑
i=1

C∑
c=1

r
(l+1)
ic

[
log πc + log φ

{
Yi |mc, σ

2
c

}]
Kh(Xi − x), (3.4)

for x = uj , j = 1, . . . , N . In practice, if n is not very large, one
may choose the observed {X1, . . . , Xn} to be the grid points. In
such case, N = n.

The maximization of Equation (3.4) is equivalent to
maximizing

n∑
i=1

C∑
c=1

r
(l+1)
ic log πcKh(Xi − x), (3.5)

and for c = 1, . . . , C,

n∑
i=1

r
(l+1)
ic log φ

{
Yi |mc, σ

2
c

}
Kh(Xi − x), (3.6)

separately. For x ∈ {uj , j = 1, . . . , N}, the solution for maxi-
mization of Equation (3.5) is

π (l+1)
c (x) =

∑n
i=1 r

(l+1)
ic Kh(Xi − x)∑n

i=1 Kh(Xi − x)
, (3.7)

and the closed-form solution for Equation (3.6) is

m(l+1)
c (x) =

n∑
i=1

w
(l+1)
ic (x)Yi

/ n∑
i=1

w
(l+1)
ic (x), (3.8)

σ 2(l+1)
c (x) =

∑n
i=1 w

(l+1)
ic (x)

{
Yi − m(l+1)

c (x)
}2∑n

i=1 w
(l+1)
ic (x)

, (3.9)

where w
(l+1)
ic (x) = r

(l+1)
ic Kh(Xi − x). Furthermore, we update

π (l+1)
c (Xi), m(l+1)

c (Xi), and σ 2(l+1)
c (Xi), i = 1, . . . , n, by lin-

early interpolating π (l+1)
c (uj ), m(l+1)

c (uj ), and σ 2(l+1)
c (uj ), j =

1, . . . , N , respectively. With initial values of πc(·), mc(·), and
σ 2(·), the proposed estimation procedure is summarized in the
following algorithm.

An EM algorithm:

Initial Value: Conduct a mixture of polynomial regressions with
constant proportions and variances, and obtain the estimates
of mean functions m̄c(x), and parameters σ̄ 2

c , π̄c. Set the initial
values m(1)

c (x) = m̄c(x), σ 2(1)(x) = σ̄ 2
c , and π (1)

c (x) = π̄c.
E-step: Use Equation (3.3) to calculate r

(l)
ic for i = 1, . . . , n, and

c = 1, . . . , C.

M-step: For c = 1, . . . , C and j = 1, . . . , N , evaluate
π (l+1)

c (uj ) in (3.7), m(l+1)
c (uj ) in (3.8) and σ 2(l+1)

c (uj ) in (3.9).
Further obtain π (l+1)

c (Xi), m(l+1)
c (Xi) and σ 2(l+1)

c (Xi) using
linear interpolation.

Iteratively update the E-step and the M-step with l = 2, 3, . . . ,

until the algorithm converges.
It is well known that an ordinary EM algorithm for parametric

models possesses an ascent property, which is a desired property.
The modified EM algorithm can be regarded as a generalization
of the EM algorithm from parametric models to nonparametric
ones. Thus, it is of interest to study whether the modified EM
algorithm still preserves the ascent property.

Let θ (l)(·) = {π (l)(·), σ 2(l)(·), m(l)(·)} be the estimated func-
tions in the lth cycle of the proposed EM algorithm. We rewrite
the local log-likelihood function (3.2) as

�n(θ) =
n∑

i=1

�(θ , Yi)Kh(Xi − x). (3.10)

Theorem 3. For any given point x in the interval ofX , suppose
that θ (l)(·) has a continuous first derivative, h → 0, and nh → ∞
as n → ∞. It follows that

lim inf
n→∞ n−1

[
�n

{
θ (l+1)(x)

}− �n

{
θ (l)(x)

}] ≥ 0 (3.11)

in probability.

4. MODEL SELECTION

Model selection for model (2.1) includes selection of the
number of components C and the bandwidth h. For any given C,
bandwidth selection is relatively easy as compared to the selec-
tion of C, and data-driven methods such as CV can be applied.
However, selection of C in mixture models is challenging, and
the situation becomes worse in the complicated setting (2.1).
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We first investigate the methods for determining C in literature
that can be adapted to our model.

4.1 Selection of the Number of Components

Two main approaches to determining the number of compo-
nents are based on the likelihood function. One approach is to
carry out a likelihood ratio test. Note that the regularity condi-
tions for deriving a likelihood ratio test do not hold with order
testing problem in mixture models, because the true parameter
values of a smaller mixture model do not necessarily lie in the
interior of the parameter space of the larger model. Many ef-
forts have been made to overcome the difficulty, for example,
the modified likelihood ratio test (Chen, Chen, and Kalbfleisch
2001), and the EM test (Li and Chen 2010). However, these pro-
cedures are developed for parametric mixture distributions and
difficult to implement in more complex models such as model
(2.1).

In this article, we focus on another likelihood-based approach:
the information criterion approach. In general, an information
criterion has the form

− 2L + λ × df, (4.1)

where L is the maximum log-likelihood of a specific model,
and df is the degree of freedom, which accounts for the model
complexity. The first term is a measurement of goodness of fit,
and the second term is a penalty for model complexity. Two
popular criteria, AIC and BIC, are obtained by setting λ = 2
and λ = log(n), respectively. For comparison, we need to es-
timate the mixture model under a misspecified C. When C is
less than the true number of components, model bias could be
large, which may lead to a smaller value of the log-likelihood.
When C is greater than the true number of components, over-
fitting of the number of components occurs in model (2.1). As
an illustration, the mixture likelihood of a model with C − 1
distinct components is equal to the likelihood of a C-component
model, in which either one component has zero proportion or
two components are identical. This implies that the larger model
is nonidentifiable, and the likelihood function is irregular. Nev-
ertheless, information approaches have been investigated and
applied in mixture models, as the first term of Equation (4.1)
relates only to the likelihood. In practice, we may employ the
EM algorithm for estimation and benefit from its ascent prop-
erty. Feng and McCulloch (1996) showed that in parametric
mixture density setting, the maximum likelihood estimator con-
verges to a point belonging to a set of nonidentifiable parameter
values that characterize the true density. Leroux (1992) proved
that in the context of finite mixture distribution, using AIC and
BIC would not underestimate the true number of components
asymptotically. There are encouraging results for applications
of BIC in mixture models, while AIC tends to overestimate the
true number of components. Detailed reviews of applications
of information criteria in finite mixture models are summarized
in the literature by Frühwirth-Schnatter (2006) and McLachlan
and Peel (2000).

For model (2.1), we first estimate the unknown functions
and evaluate the likelihood in Equation (3.1). To implement the
information criteria, we need to assess the model complexity.
Here we consider the degree of freedom derived by Fan, Zhang,

and Zhang (2001), which is originally developed for testing
hypotheses on nonparametric functions. The degree of freedom
of a one-dimensional varying coefficient function is

df = τKh−1|�|
{
K(0) − 1

2

∫
K2(t)dt

}
,

where � is the support of the varying-coefficient covariate, and

τK = K(0) − 1
2

∫
K2(t)dt∫ {

K(t) − 1
2K ∗ K(t)

}2
dt

.

This definition is analogous to the number of parameters in
piecewise constant approximation. Fan, Zhang, and Zhang
(2001) remarked that in the local polynomial fitting the result
holds if we replace K by its equivalent kernel. As in model (2.1),
the degree of freedom is (3C − 1) × df, with � replaced by the
support of x. Note that the degree of freedom depends on both
C and bandwidth in our model setting. We propose applying
the information criteria under a wide range of bandwidths, and
comparing the minimum scores of models with different number
of components.

4.2 Bandwidth Selection

Bandwidth selection is a fundamental issue in nonparametric
smoothing. For given C, we propose a multifold CV method to
choose the bandwidth. Denote by D the full dataset. Then we
randomly partition D into a training set Rj , and a test set Tj ,
j = 1, . . . , J . Based on the data in training set Rj we obtain
estimates {m̂c(·), σ̂ 2

c (·), π̂c(·)}, and evaluate mc(·), σ 2
c (·), and

πc(·) for the data in the corresponding testing set.
Then we calculate the probability of membership in test set

Tj . For (xl, yl) ∈ Tj , c = 1, . . . , C,

r̂lc = π̂c(xl)φ
{
yl|m̂c(xl), σ̂ 2

c (xl)
}

∑C
q=1 π̂q(xl)φ

{
yl|m̂q(xl), σ̂ 2

q (xl)
} .

Now we can implement the regular CV criterion in the proposed
model, that is,

CV =
J∑

j=1

∑
l∈Tj

(yl − ŷl)
2, (4.2)

where ŷl = ∑C
c=1 r̂lc m̂c(xl) is the predicted value for yl in the

test set Tj . We select the bandwidth that minimizes CV.

Remark. The selection of C and h might affect each other. In
practice, we would suggest first choosing C by minimizing the
information criterion score over both a set of possible values for
C and a wide range values for h (i.e., a set of two-dimensional
grid points). After determining C, we choose h by minimizing
the CV score defined in Equation (4.2).

5. SIMULATION AND APPLICATION

In this section, we address some practical implementation
issues such as standard error estimation for our model. To assess
the performance of the estimators of the unknown regression
functions mc(x), we consider the square root of the average
squared errors (RASE) of estimators for the unknown functions.
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Table 1. Frequencies of selected C’s by BIC

n = 200 h = 0.06 h = 0.10 h = 0.14 h = 0.18 h = 0.22 minh BICh

C = 1 986 520 89 22 18 17
C = 2 1 465 907 972 979 961
C = 3 9 7 1 3 0 11
C = 4 3 4 0 0 0 3
C = 5 1 4 3 3 3 8

n = 400 h = 0.05 h = 0.08 h = 0.11 h = 0.14 h = 0.17 minh BICh

C = 1 877 8 0 0 0 0
C = 2 120 990 998 998 1000 997
C = 3 3 0 0 0 0 0
C = 4 0 0 0 1 0 1
C = 5 0 2 2 1 0 2

n = 800 h = 0.04 h = 0.06 h = 0.08 h = 0.10 h = 0.12 minh BICh

C = 1 5 0 0 0 0 0
C = 2 995 1000 999 999 999 998
C = 3 0 0 0 0 0 0
C = 4 0 0 0 0 0 0
C = 5 0 0 1 1 1 2

For the mean functions,

RASE2
m = N−1

C∑
c=1

N∑
j=1

{m̂c(uj ) − mc(uj )}2,

where {uj , j = 1, . . . , N} are the grid points taken evenly in the
range of covariate x. Similarly, we can define RASE for variance
functions σ 2

c (x)s and proportion functions πc(x)s, denoted by
RASEσ and RASEπ , respectively.

We use a bootstrap procedure to estimate the standard errors,
and construct pointwise confidence intervals for the unknown
functions. For given xi , we can generate bootstrapped data Y ∗

i

from the distribution
∑C

c=1 π̂c(xi)N{m̂c(xi), σ̂ 2
c (xi)}. By apply-

ing our estimation procedure for each of the bootstrap samples,
we obtain the standard errors and confidence intervals.

5.1 Simulation Study

Example 1. In this example, we conduct a simulation for
a two-component nonparametric mixture of regression model
with

π1(x) = exp(0.5x)/{1 + exp(0.5x)},
and π2(x) = 1 − π1(x),

m1(x) = 3 − sin(2πx), and m2(x) = cos(3πx),

σ1(x) = 0.6 exp(0.5x), and σ2(x) = 0.5 exp(−0.2x).

We generate the predictor x from one-dimensional uniform
distribution on [0, 1], and set the number of grid points N = 100.
The Epanechnikov kernel is used in our simulation. It is well
known that the EM algorithm may be trapped by local max-
imizers and thus is sensitive to initial values. To obtain good
initial values, we first fit a mixture of polynomial regression
models, and obtain the estimates of mean functions m̄c(x), and
parameters σ̄ 2

c , π̄c. The order of polynomial regression for each
mean function is set to be 5. Then we set the initial values
m(1)

c (x) = m̄c(x), σ 2(1)(x) = σ̄ 2
c , and π (1)

c (x) = π̄c. Based on our
limited simulation experience, our procedure with initial values

given by an overfitting (high polynomial order) mixture of poly-
nomial regression model performs almost as well as those with
true values as initial values, and order 5 works well in the sim-
ulation setting.

We first test the performance of information criterion (4.1)
in selecting the number of components under BIC. For
each dataset, we fit the nonparametric mixture of regression
models with 1, 2, 3, 4, and 5 components under five different
bandwidths, and then compare the information scores. The sets
of bandwidths cover the cases of undersmoothing, appropriate
smoothing, and oversmoothing (see the next paragraph and
bandwidths in Table 2). For a given bandwidth h, we report the
frequencies of selected C’s over 1000 simulations in Table 1,
from which it can be seen that undersmoothing may yield an
underestimated C. For each simulated dataset, we should select
C by minimizing the BIC score over the five C’s and the five
bandwidths. The frequencies of such selected C’s over 1000
simulations are depicted in the last column of Table 1, from
which the proportions of BIC choosing the correct model (i.e.,
two-component model) in the 1000 simulations are 96.1%,
99.7%, and 99.8% for n = 200, 400, and 800, respectively. This
result shows that Equation (4.1) using BIC works reasonably

Table 2. Mean and standard deviation of RASEs

n h RASEm RASEσ 2 RASEπ

200 0.067 0.328 (0.067) 0.560 (0.071) 0.113 (0.023)
0.10 0.315 (0.074) 0.506 (0.073) 0.099 (0.026)
0.15 0.388 (0.092) 0.455 (0.080) 0.097 (0.033)

400 0.053 0.252 (0.042) 0.501 (0.053) 0.090 (0.017)
0.08 0.234 (0.049) 0.461 (0.057) 0.077 (0.018)
0.12 0.283 (0.064) 0.427 (0.062) 0.079 (0.026)

800 0.04 0.195 (0.028) 0.463 (0.040) 0.073 (0.012)
0.06 0.174 (0.032) 0.436 (0.044) 0.062 (0.013)
0.09 0.195 (0.046) 0.414 (0.046) 0.059 (0.018)
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Table 3. Standard error via bootstrap (n = 200, h = 0.10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m1(·) SD 0.265 0.195 0.186 0.189 0.207 0.218 0.222 0.220 0.212
SE 0.199 0.172 0.164 0.171 0.185 0.202 0.204 0.201 0.201
Std 0.048 0.040 0.035 0.034 0.037 0.044 0.044 0.040 0.040

m2(·) SD 0.197 0.183 0.134 0.146 0.169 0.143 0.139 0.164 0.148
SE 0.160 0.152 0.134 0.132 0.141 0.131 0.123 0.141 0.137
Std 0.047 0.037 0.035 0.034 0.033 0.032 0.031 0.034 0.038

σ1(·) SD 0.213 0.179 0.176 0.176 0.213 0.261 0.282 0.260 0.286
SE 0.181 0.159 0.151 0.165 0.196 0.236 0.257 0.256 0.249
Std 0.062 0.060 0.055 0.057 0.070 0.085 0.090 0.089 0.091

σ2(·) SD 0.091 0.105 0.098 0.094 0.085 0.078 0.071 0.082 0.083
SE 0.078 0.094 0.098 0.088 0.079 0.071 0.067 0.071 0.079
Std 0.034 0.039 0.045 0.041 0.032 0.029 0.026 0.030 0.044

π1(·) SD 0.119 0.095 0.084 0.086 0.089 0.090 0.090 0.088 0.084
SE 0.102 0.091 0.086 0.085 0.086 0.087 0.086 0.084 0.084
Std 0.015 0.010 0.010 0.009 0.009 0.010 0.010 0.009 0.010

well in our simulation setting. In the following simulation, we
assume that the number of components C is known.

To demonstrate that the proposed procedure works quite
well for a wide range of bandwidths, we use the following
strategy rather than CV to determine the bandwidth for
each generated sample in our simulation study. For a given
sample size, we generate several simulated datasets, and then
choose a bandwidth by CV for each generated dataset. The
optimal bandwidth is taken to be the average of these selected
bandwidths with rounding. Then we consider three different
representative bandwidths of undersmoothing, appropriate
smoothing, and oversmoothing cases: 2/3 of the optimal
bandwidth, the optimal bandwidth, and 1.5 times the optimal
bandwidth. We conduct 500 simulations with sample sizes
n = 200, 400, and 800, respectively. Table 2 displays the mean
and standard deviation of RASEs over the 500 simulations.
From Table 2, we see that the performance of the proposed
procedure is not sensitive to a wide range of bandwidths.

We next test the accuracy of the standard error estimation
via a bootstrap method. Tables 3, 4, and 5 summarize the per-
formance of the standard errors of the functional estimates at

x = 0.1, 0.2, . . . , 0.9. The standard deviation of 500 estimates,
denoted by SD, can be viewed as the true standard errors. We
then calculate the sample average and standard deviation of the
500 estimated standard errors using bootstrap, denoted by SE
and Std in Tables 3, 4, and 5. The result shows that although
underestimations are present in many cases, the proposed boot-
strap procedure works reasonably well because the difference
between the true value and the estimate is less than twice of the
standard error of the estimate.

Now we illustrate the performance of the proposed procedure
using a typical simulated sample with n = 400. This typical
sample is selected to be the one with median of RASEm in
the 500 simulation samples. Figure 2(a) shows the scatterplot
of the typical sample data and the true mean functions. Be-
fore we conduct analysis using the nonparametric mixture of
regression model for this dataset, we first determine the number
of components C using the information approach developed in
Section 4. For this typical dataset, we fit the data using model
(2.1) with one, two, three, and four components under a set
of bandwidths {0.05, 0.08, 0.11, 0.14, 0.17}, and then calculate
their corresponding BIC scores. The smallest BIC score yields a

Table 4. Standard error via bootstrap (n = 400, h = 0.08)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m1(·) SD 0.193 0.153 0.134 0.156 0.155 0.178 0.167 0.169 0.176
SE 0.160 0.136 0.130 0.136 0.146 0.159 0.161 0.160 0.164
Std 0.032 0.027 0.023 0.022 0.025 0.030 0.029 0.028 0.027

m2(·) SD 0.149 0.124 0.113 0.106 0.120 0.107 0.104 0.111 0.106
SE 0.122 0.116 0.105 0.102 0.107 0.102 0.097 0.105 0.101
Std 0.029 0.025 0.023 0.022 0.022 0.020 0.019 0.021 0.020

σ1(·) SD 0.168 0.138 0.131 0.140 0.159 0.194 0.226 0.225 0.213
SE 0.149 0.127 0.124 0.135 0.162 0.192 0.204 0.207 0.214
Std 0.041 0.040 0.036 0.037 0.047 0.055 0.062 0.064 0.057

σ2(·) SD 0.073 0.081 0.080 0.069 0.069 0.068 0.061 0.056 0.058
SE 0.066 0.077 0.077 0.069 0.064 0.060 0.056 0.057 0.057
Std 0.023 0.028 0.029 0.024 0.022 0.021 0.018 0.018 0.022

π1(·) SD 0.092 0.075 0.071 0.068 0.074 0.069 0.069 0.069 0.070
SE 0.083 0.071 0.068 0.068 0.068 0.070 0.069 0.067 0.067
Std 0.011 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.007
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Table 5. Standard error via bootstrap (n = 800, h = 0.06)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m1(·) SD 0.153 0.114 0.110 0.113 0.121 0.136 0.137 0.132 0.131
SE 0.130 0.110 0.107 0.111 0.120 0.130 0.131 0.131 0.134
Std 0.023 0.018 0.015 0.016 0.018 0.021 0.021 0.019 0.017

m2(·) SD 0.116 0.093 0.083 0.086 0.092 0.085 0.076 0.086 0.082
SE 0.098 0.092 0.081 0.081 0.085 0.082 0.079 0.082 0.080
Std 0.019 0.017 0.013 0.013 0.015 0.014 0.013 0.013 0.013

σ1(·) SD 0.132 0.112 0.104 0.116 0.138 0.167 0.184 0.172 0.176
SE 0.119 0.104 0.105 0.113 0.134 0.160 0.168 0.171 0.174
Std 0.030 0.028 0.024 0.026 0.032 0.039 0.043 0.039 0.036

σ2(·) SD 0.072 0.069 0.056 0.052 0.060 0.049 0.051 0.046 0.046
SE 0.059 0.063 0.058 0.054 0.054 0.050 0.048 0.046 0.046
Std 0.017 0.019 0.015 0.014 0.016 0.013 0.013 0.012 0.013

π1(·) SD 0.075 0.061 0.055 0.054 0.054 0.060 0.054 0.057 0.055
SE 0.068 0.058 0.056 0.056 0.056 0.056 0.056 0.055 0.055
Std 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

two-component model. Thus, a two-component model is se-
lected. We use the proposed CV criterion to select a bandwidth.
The CV bandwidth selector yields the bandwidth 0.065. The
resulting estimate of mean functions along with their pointwise
confidence intervals are depicted in Figure 2(b), from which
we can see that the true mean functions lies within the confidence
interval for most points. This implies that the proposed estima-
tion procedure performs quite well with moderate sample sizes.

Example 2. The goal is to compare model (2.1) with the
mixture of linear regression models with varying proportions
(Equation (2.2)), and the classical mixture of regression models.
In this example, 500 random samples are generated from the
three different scenarios: (a) model (2.1) with the same settings
in Example 1; (b) model (2.2) with

π1(x) = 0.1 + 0.8 sin(πx) and π2(x) = 1 − π1(x),

m1(x) = 4 − 2x and m2(x) = 3x,

σ 2
1 (x) = 0.09 and σ 2

2 (x) = 0.16,

which is designed in example 1 by Huang and Yao (2012); and
(c) classical mixture of regression models with π1 = π2 = 0.5,
while mean and variance functions are the same as those in sce-
nario (b). The predictor x is taken from uniform distribution on
[0, 1], and the grid points are evenly distributed with N = 100.
For each sample we fit the data by model (2.1), model (2.2) with
z = x, and the classical mixture of regression models. In esti-
mation, we assumed that the number of components is fixed, and
used Epanechnikov kernel function for smoothing. CV method
is used to select bandwidths for model (2.2). We choose the
bandwidths using procedure similar to the one used for Table 2
rather than using CV for each simulation, and only report the
best bandwidth. The mean and standard deviation of RASEs for
three models are recorded in Table 6. The lines beginning with
“M1,” “M2,” and “M3” give the results of model (2.1), model
(2.2), and classical mixture of regression models, respectively.
In scenario (a), model (2.1) performs significantly better than
other two models as expected. In scenarios (b) and (c), one may
see how much efficiency is lost if the nonparametric approach is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1
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A typical sample and the true mean functions

x

y

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

2

3
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Estimated mean functions, true mean functions and confident intervals
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y

estimated mean functions
true mean functions
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(b)

Figure 2. (a) A typical sample of simulated data (n = 400), and the plot of true mean functions; (b) The estimated mean functions (solid
lines), true mean functions (dashed lines), and 95% pointwise confidence intervals (dotted lines) with n = 400, h = 0.065.
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Table 6. Mean and standard deviation of RASEs

RASEm RASEσ 2 RASEπ RASEm RASEσ 2 RASEπ

Scenario (a), n = 200 (hM1 = 0.10, hM2 = 0.10) n = 400 (hM1 = 0.08, hM2 = 0.08)
M1 0.315 (0.074) 0.506 (0.073) 0.099 (0.027) 0.234 (0.049) 0.461 (0.057) 0.077 (0.018)
M2 3.461 (1.494) 0.831 (0.470) 0.239 (0.080) 3.687 (1.407) 0.819 (0.395) 0.241 (0.072)
M3 3.406 (1.517) 0.719 (0.439) 0.132 (0.075) 3.634 (1.438) 0.628 (0.247) 0.120 (0.053)

Scenario (b), n = 200 (hM1 = 0.13, hM2 = 0.08) n = 400 (hM1 = 0.12, hM2 = 0.07)
M1 0.248 (0.085) 0.163 (0.043) 0.138 (0.047) 0.199 (0.064) 0.168 (0.032) 0.120 (0.038)
M2 0.083 (0.033) 0.150 (0.025) 0.107 (0.030) 0.060 (0.024) 0.153 (0.019) 0.082 (0.023)
M3 0.113 (0.042) 0.155 (0.027) 0.254 (0.005) 0.102 (0.032) 0.157 (0.020) 0.253 (0.004)

Scenario (c), n = 200 (hM1 = 0.14, hM2 = 0.11) n = 400 (hM1 = 0.13, hM2 = 0.08)
M1 0.187 (0.085) 0.160 (0.029) 0.098 (0.040) 0.155 (0.077) 0.164 (0.021) 0.075 (0.032)
M2 0.079 (0.033) 0.153 (0.023) 0.100 (0.030) 0.057 (0.021) 0.155 (0.017) 0.084 (0.023)
M3 0.075 (0.031) 0.154 (0.023) 0.033 (0.023) 0.055 (0.020) 0.156 (0.016) 0.022 (0.018)

used for the mean, variance, and proportion functions. For the
case n = 200 of scenario (b), the RASEs of model (2.1) have
around two times increment for the mean function, and 29%
increment for the proportion function, as compared to those of
the model (2.2). Similar results are found for the case n = 400.

5.2 Application

In this section, we illustrate the proposed model and estima-
tion procedure by an analysis of a real dataset, which contains the
monthly change of S&P/Case-Shiller HPI and monthly growth
rate of United States gross domestic product (GDP) from Jan-
uary 1990 to December 2002. Note that the observations are time
series data, and may not be independent as assumed by model
(2.1). We discussed this problem in Section 6. It is known that
HPI is a measure of a nation’s average housing price in repeat
sales, and the S&P/Case-Shiller HPI uses a modified weighted
method that may adjust for the quality of the houses; GDP is a
measure of the size of a nation’s economy, as it recognizes the
total goods and services produced within a nation in a given pe-
riod. The housing sector plays an important role in the national
economy, and the house price and GDP are interrelated. It is of
interest to investigate the impact of GDP growth rate on HPI
change. Hence, we set HPI change to be the response variable,
and the GDP growth rate to be the predictor. The scatterplot of
this dataset is depicted in Figure 3(a). As expected, the impact of
GDP growth rate on HPI change may have different patterns in
different macroeconomic cycles, which provides a connection
to a mixture framework. In the analysis, we do not specify the
cycle identities which the observations belong to, and treat the
underlying cycle as a latent variable. Then we analyze the data
by model (2.1) via the proposed estimation procedure.

We first determine the number of component C using the
information approach. For a set of bandwidths {0.08, 0.11,

0.14, 0.17, 0.20}, the dataset is fitted with model (2.1) with one,
two, three, and four components, respectively. Then we calcu-
late and compare their BIC scores. For each of the five band-
widths, the minimum BIC score is achieved at C = 2, hence
a two-component model is selected. This result suggests that
likely there are two economic cycles from 1990 to 2002 as re-
flected by the relation between HPI change and GDP growth.
We next select the bandwidth for the two-component model. An

optimal bandwidth is selected at 0.11 by a five-fold CV selec-
tor described in Equation (4.2). With this selected bandwidth,
we fit the data with a two-component nonparametric mixture
of regression models. We choose N = 100 grid points evenly
from the range of the predictor. The estimated mean functions,
proportion functions, and variance functions with their 95%
pointwise confidence intervals are shown in Figure 3(b), (c),
and (d), respectively. We further depict the hard-clustering re-
sult in Figure 3(b), which is obtained by assigning component
identities according to the largest ric, c = 1, 2. Together with
the original data with actual calendar dates, it can be seen that
the circle points from the lower cluster are mainly from January
1990 to September 1997. The triangle points in the upper cluster
are mainly from October 1997 to December 2002, during which
the economy experienced an Internet boom and bust. From the
result, we observe that in the first cycle (lower component),
GDP growth has a positive impact on HPI change; in the second
cycle (upper component), HPI change tends to be lower when
GDP growth is in the middle, as compared to the situations of
both high and low GDP growth.

6. DISCUSSION

In this article, we proposed a class of nonparametric finite
mixture of regression models, which allows the mixing propor-
tions, the mean functions, and the variance functions all to be
nonparametric functions of the covariate. We showed that the
proposed models are identifiable under mild conditions. There
are some structures not satisfying condition (ii) of Theorem 1,
for example, consider the mean functions of a two-component
structure as shown in Figure 1(b). If the variance functions of
the two components are the same, then there are two solutions
of mean functions: (i) m1(x) and m2(x) are tangent to each
other; (ii) m1(x) is a monotone decreasing mean, and m2(x) a
monotone increasing mean. It is unclear which paths the mean
functions will follow without knowing the second derivatives
of the mean functions at the “cross.” Condition (ii) excludes
such case, and the identifiability issue for model (2.1) deserves
further research.

For the proposed nonparametric finite mixture of regression
models, we focus on estimation when x is an interior point in the
range of covariate. It is certainly of interest to study the boundary
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Figure 3. (a) Scatterplot of U.S. house price index data. (b) Estimated mean functions with 95% confidence intervals and a hard-clustering
result. (c) Estimated mixing proportion function. (d) Estimated variance functions.

effect of the proposed procedure. The boundary effect has been
studied in the article by Cheng, Fan, and Marron (1997) for
the nonparametric regression model. It is interesting to conduct
hypothesis test on whether the mixing proportions are constants,
on whether some of the mean functions are constants or of
specific parametric forms, and on whether the variance functions
are parametric ones. These issues need further investigations.

In the real data analysis, we were analyzing time series data
by model (2.1), and this may not fit the general setting of the
article where the data are assumed to be independent. We have
examined the autocorrelation of series of HPI change and GDP
growth, and the sample autocorrelation functions show that they
are not independent. An ADF test shows that both HPI and
GDP series are trend stationary. For this type of time series
data, we conjecture that under certain regularity conditions, the√

nh convergence rate of the estimators still holds, although the
asymptotic bias and variance terms may have different forms.
Extension of our methodology to time series data is an interest-
ing problem and deserves further research.

APPENDIX: TECHNICAL CONDITIONS AND PROOFS

Proof of Theorem 1. Let us consider the subset of R

S = {
xk :

(
mi(xk), σ 2

i (xk)
) = (

mj (xk), σ 2
j (xk)

)
for some i �= j

}
,

where some parameter curves intersect. Since any two parameter curves
are transversal, any point in S is an isolated point. This implies that set
S ⊂ R has no limit point and contains at most countably many points.
Therefore, without loss of generality, we assume that xk < xk+1 and
(xk, xk+1) ∩ S = ∅, k = 0, ±1, ±2, . . . .

Assume that model (2.1) admits another representation

Y |X = x ∼
D∑

d=1

λd (x)N
(
νd (x), δ2

d (x)
)
,

where λd (x) > 0, d = 1, . . . , D.
We know that the finite mixture of normal distributions is identifiable

(see Titterington et al. 1985, p. 38, example 3.1.4). Hence, for any
given x �∈ S, model (2.1) is identifiable. It follows that C = D, and
there exists a permutation ωx = {ωx(1), . . . , ωx(C)} of set {1, . . . , C}
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depending on x, such that

λωx (c)(x) = πc(x), νωx (c)(x) = mc(x), δ2
ωx (c)(x) = σ 2

c (x),

c = 1, . . . , C. (A.1)

Since all the parameter curves (mi(x), σ 2
i (x)) are continuous, and no

pair of parameter curves intersect on any interval (xk, xk+1), the per-
mutation ωx must be constant on (xk, xk+1). On the other hand, for
any xk ∈ S, consider a small neighborhood (xk − u, xk + u) such that
(xk − u, xk + u) ⊂ (xk−1, xk+1). Since any pair of parameter curves
are transversal, they have different derivatives at xk if they intersect
at xk , hence the permutation must be constant on the neighborhood
(xk − u, xk + u) since equation (A.1) implies the identity of deriva-
tives of parameter curves on either side of xk . Therefore, there exists a
permutation ω = {ω(1), . . . , ω(C)} of set {1, . . . , C} that is indepen-
dent of x such that

λω(c)(x) = πc(x), νω(c)(x) = mc(x), δ2
ω(c)(x) = σ 2

c (x), c = 1, . . . , C.

This completes the proof of identifiability.

Now we outline the key steps for proofs of Theorems 2 and 3.
Note that θ = (πT , σ 2T , mT )T is a (3C − 1) × 1 vector. Whenever
necessary, we rewrite θ = (θ1, . . . , θ3C−1)T without changing the order
of π , σ 2, and m. Otherwise, we will use the same notation as defined
in Section 2.

Regularity Conditions

A. The sample {(Xi, Yi), i = 1, . . . , n} is independent and identi-
cally distributed from its population (X, Y ). The support for X,
denoted by X , is a compact subset of R1.

B. The marginal density function f (x) of X is twice continuously
differentiable and positive for all x ∈ X .

C. There exists a function M(y), with E{M(Y )} < ∞, such
that for all y, and all θ in a neighborhood of θ (x),
|∂3�(θ , y)/∂θj ∂θk∂θl | < M(y).

D. The unknown functions θ (x) have continuous second deriva-
tives; moreover, for c = 1, . . . , C, σ 2

c (x) > 0, and πc(x) > 0
hold for all x ∈ X .

E. The kernel function K(·) has a bounded support, and satisfies
that∫

K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du < ∞,∫

K2(u)du < ∞,

∫
|K3(u)|du < ∞.

F. The following conditions hold for all i and j:

E

(∣∣∣∣∂�(θ (x), Y )

∂θj

∣∣∣∣
3
)

< ∞, E

[{
∂2�(θ (x), Y )

∂θi∂θj

}2
]

< ∞.

G. h → 0, nh → ∞, and nh5 = O(1) as n → ∞.

All these are mild conditions and have been used in the literature of
local-likelihood estimation and mixture models. The following lemma
will be used in the proof of Theorem 2.

Lemma 1. Under Conditions A, C, and F, for any interior point x of
X , it holds that

E[q1{θ (X), Y }|X = x] = 0, (A.2)

E[q2{θ (X), Y }|X = x] = −E[q1{θ(X), Y }qT
1 {θ(X), Y }|X = x].

(A.3)

Proof. Conditioning X = x, Y follows a finite mixture of normals.
Thus, by some calculations, Equation (A.2) holds. Furthermore, Equa-
tion (A.3) follows from regularity conditions C, F and the arguments

on page 39 of the literature by McLachlan and Peel (2000) together.
This completes the proof of the lemma.

We refer to Equations (A.2) and (A.3) as the local Barlett’s first and
second identities, respectively. Equation (A.2) implies that 	(x|x) = 0.

Proof of Theorem 2. For c = 1, . . . , C, denote

m∗
c =

√
nh{mc − mc(x)},

σ 2∗
c =

√
nh
{
σ 2

c − σ 2
c (x)

}
.

For c = 1, . . . , C − 1, denote

π∗
c =

√
nh{πc − πc(x)}.

Let m∗ = (m∗
1, . . . , m

∗
C)T , σ 2∗ = (σ 2∗

1 . . . , σ 2∗
C )T , and π∗ = (π∗

1 , . . . ,

π∗
C−1)T . Denote θ∗ = (π∗T , σ 2∗T , m∗T )T . Recall that

�(θ (x), y) = log η{y|θ(x)} = log

{
C∑

c=1

πc(x)φ
{
y|mc(x), σ 2

c (x)
}}

.

Let

�(θ (x) + γnθ
∗, y) = log

⎧⎨
⎩

C∑
c=1

(πc(x) + γnπ
∗
c )

× φ
(
y|mc(x) + γnm

∗
c , σ

2
c (x) + γnσ

2∗
c

)⎫⎬⎭.

Thus, if {π̃ , σ̃ 2, m̃} maximizes Equation (3.2), then θ̃
∗

maximizes

�∗
n(θ∗) = h

n∑
i=1

{�(θ (x) + γnθ
∗, Yi) − �(θ (x), Yi)}Kh(Xi − x). (A.4)

By Taylor expansion,

�∗
n(θ∗) = �nθ

∗ + 1

2
θ∗T �nθ

∗ + hγ 3
n

6

n∑
i=1

R(θ (x), ξ̃i), (A.5)

where ξ̃i = tiγnθ
∗ for some ti ∈ (0, 1), and

�n =
√

h

n

n∑
i=1

q1{θ (x), Yi}Kh(Xi − x),

�n = 1

n

n∑
i=1

q2{θ (x), Yi}Kh(Xi − x),

R(θ (x), ξ̃i) =
∑
j,k,l

∂3�(θ (x) + ξ̃i , Yi)

∂θj ∂θk∂θl

Kh(Xi − x)θ∗
j θ∗

k θ∗
l .

Denote by �n(i, j ) the (i, j )th element of �n. By condition E, it can be
shown that

E�n(i, j ) =
∫

Y

∫
X

∂2�(θ (x), y)

∂θi∂θj

η{y|θ (u)}f (u)Kh(u − x)dudy

= f (x)
∫

Y

∂2�(θ (x), y)

∂θi∂θj

η{y|θ(x)}dy + o(1).

Therefore, E�n = −f (x)I(x) + o(1). var{�n(i, j )} is dominated by
the term

1

n

∫
Y

∫
X

{
∂2�(θ (x), y)

∂θi∂θj

}2

η{y|θ(u)}f (u)K2
h(u − x)dudy,

which can be shown to have the order O{(nh)−1} under condition F.
Therefore, we have

�n = −f (x)I(x) + oP (1).
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By condition C, the expectation of the absolute value of the last term
of Equation (A.5) is bounded by

O

(
γnE max

j,k,l

∣∣∣∣∂3�(θ (x) + ξ̃ , Y )

∂θj ∂θk∂θl

Kh(Xi − x)

∣∣∣∣
)

= O(γn). (A.6)

Thus, the last term of Equation (A.5) is of order OP (γn). Therefore, we
have

�∗
n(θ∗) = �nθ

∗ − 1

2
f (x)θ∗T I(x)θ∗ + oP (1). (A.7)

Using the quadratic approximation lemma (see, e.g., p. 210 of the
literature by Fan and Gijbels 1996), we have

θ̂
∗ = f (x)−1I(x)−1�n + oP (1). (A.8)

To establish the asymptotic normality, it remains to calculate the mean
and variance of �n, and verify the Lyapounov condition. Note that

E(�n) =
√

nh

∫
Y

∫
X

q1{θ(x), y}η{y|θ(u)}f (u)Kh(u − x)dudy

=
√

nh

∫
X

	(u|x)f (u)Kh(u − x)du.

Under conditions C, D, and F, 	(u|x) has a continuous second deriva-
tive. Thus, using the fact 	(x|x) = 0 by Lemma 1 and standard argu-
ments in kernel regression, it follows that

E(�n) =
√

nhf (x)

{
f ′(x)	′

u(x|x)

f (x)
+ 1

2
	′′

u(x|x)

}
κ2h

2{1 + o(1)}.

For the covariance term of �n, we have

cov(�n) = hE
{
q1{θ (x), Y }qT

1 {θ (x), Y }K2
h(X − x)

}+ o(1),

where its (i, j )th element is

h

∫
Y

∫
X

∂�(θ (x), y)

∂θi

∂�(θ (x), y)

∂θj

K2
h(u − x)f (u)η{y|θ(u)}dudy

P−→ f (x)ν0

∫
Y

∂�(θ (x), y)

∂θi

∂�(θ (x), y)

∂θj

η{y|θ(x)}dy

= −f (x)ν0

∫
Y

∂2�(θ (x), y)

∂θi∂θj

η{y|θ (x)}dy.

The last step holds due to Equation (A.3). Thus, cov(�n) =
f (x)I(x)ν0 + o(1). To establish the asymptotic normality for �n, it
is necessary to show that for any unit vector d,

{dT cov(�n)d}−1/2dT {�n − E(�n)} D−→ N (0, 1). (A.9)

Since cov(�n) = O(1), it follows that {dT cov(�n)d}−1 = O(1). Let
λi = dT q1{θ(x), Yi}Kh(Xi − x), then dT �n = hγn

∑n
i=1 λi . There-

fore, it is sufficient to show that nh3γ 3
n E(|λi |3) = o(1). By condi-

tion F and arguments similar to Equation (A.6), it can be shown
that nh3γ 3

n E(|λi |3) = O(γn) = o(1), and thus the Lyapounov condition
holds for Equation (A.9). By Equation (A.8) and the Slutsky theorem,
we have

√
nh{γnθ̃

∗ − B(x) + o(h2)} D−→ N
{
0, ν0f

−1(x)I−1(x)
}
. (A.10)

Proof of Theorem 3. We assume the unobserved data (Ci , i =
1, . . . , n) are a random sample from population C, and the complete
data {(Xi, Yi, Ci), i = 1, 2, . . . , n} are a random sample from (X, Y, C).
Let h{y, c|θ (x)} be the joint distribution of (Y, C) given X = x, and
f (x) be the marginal density of X. Conditioning on X = x, Y follows
a distribution η{y|θ(x)}. The local log-likelihood function (3.2) can be
rewritten as

�n(θ) =
n∑

i=1

log{η(Yi |θ )}Kh(Xi − x). (A.11)

The conditional probability of C = c given y and θ is

g{c|y, θ} = h(y, c|θ )/η(y|θ ) = πcφ
(
y|mc, σ

2
c

)
∑C

c=1 πcφ
(
y|mc, σ 2

c

) . (A.12)

For given θ (l)(Xi), i = 1, . . . , n, it is clear that
∫

g{c|Yi, θ
(l)(Xi)}dc =

1. Then we have

�n(θ ) =
n∑

i=1

log{η(Yi |θ )}
{∫

g
{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi − x)

=
n∑

i=1

{∫
log{η(Yi |θ )}g

{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi − x).

(A.13)

By Equation (A.12), we also have

log{η(Yi |θ )} = log{h(Yi, c|θ )} − log{g(c|Yi, θ )}. (A.14)

Thus,

�n(θ) =
n∑

i=1

{∫
log{h(Yi, c|θ )}g

{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi − x)

−
n∑

i=1

{∫
log{g(c|Yi, θ )}g

{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi − x),

(A.15)

where θ (l)(Xi) is the estimate of θ (Xi) at the lth iteration. Taking ex-
pectation leads to calculating Equation (3.3). In the M-step, we update
θ (l+1)(x) such that

1

n

n∑
i=1

{∫
log{h(Yi, c|θ (l+1)(x))}g

{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi − x))

≥ 1

n

n∑
i=1

{∫
log{h(Yi, c|θ (l)(x))}g

{
c|Yi, θ

(l)(Xi)
}
dc

}
Kh(Xi −x)).

It suffices to show that

lim sup
n→∞

1

n

n∑
i=1

⎡
⎣∫ log

⎧⎨
⎩

g
{
c|Yi, θ

(l+1)(x)
}

g
{
c|Yi, θ

(l)(x)
}
⎫⎬
⎭ g

{
c|Yi, θ

(l)(Xi)
}
dc

⎤
⎦

× Kh(Xi −x) ≤ 0 (A.16)

in probability. Let

Ln1 = 1

n

n∑
i=1

ϕ(Yi, Xi)Kh(Xi − x),

where

ϕ(Yi, Xi) =
∫

log

⎧⎨
⎩

g
{
c|Yi, θ

(l+1)(x)
}

g
{
c|Yi, θ

(l)(x)
}
⎫⎬
⎭ g

{
c|Yi, θ

(l)(Xi)
}
dc.

By conditions A and D, we have g{c|Y, θ (l)(X)} > a > 0 for some small
value a, and E{ϕ(Y,X)2} < ∞. Then by condition E and theorem A
by Mack and Silverman (1982), we have

sup
J

|Ln1 − f (x)Eϕ(Y, x)| = oP (1),

where J is a compact interval on which the density of X is bounded
below from 0. The proof follows from

Eϕ(Y, x) = E

⎡
⎣∫ log

⎧⎨
⎩

g
{
C|Y, θ (l+1)(x)

}
g
{
C|Y, θ (l)(x)

}
⎫⎬
⎭ g

{
c|Y, θ (l)(x)

}
dc

⎤
⎦

≤ E

⎛
⎝log

⎡
⎣∫

⎧⎨
⎩

g
{
C|Y, θ (l+1)(x)

}
g
{
C|Y, θ (l)(x)

}
⎫⎬
⎭g

{
c|Y, θ (l)(x)

}
dc

⎤
⎦
⎞
⎠=0.
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