Some Contributions of Statistics to the Genomics Revolution

Naomi Altman
Dept. of Statistics
Bioinformatics Consulting Center
PSU
Oct. 18, 2004
Genome – the set of all genes in an organism (and the DNA that regulates it)

Proteome – the set of all proteins in an organism

High throughput data – data that are generated by techniques that involve a large number of genes, DNA, RNA, proteins or other biological components
The Structure of DNA

www.bioteach.ubc.ca/.../AMonksFlourishingGarden/
From DNA to Protein

www.bioteach.ubc.ca/.../AMonksFlourishingGarden/
What is the Genomics Revolution?

A set of biological tools that enable biologists to

- Produce high throughput data such as
 - The genetic sequence of genes
 - The amino acid sequence of proteins
 - The amount of expression of each gene in a tissue
- Manipulate the genome in various ways
The genomics wish-list

• What is the function of the DNA?
• Which DNA comprises genes?
• How does a cell regulate protein production?
• What is the function of each gene?
• What is the difference between a normal and diseased cell (especially cancer)?
• How did organisms evolve?
Bioinformatics

The application of computational tools to genomic and proteomic information. This includes data storage, summary, visualization and linking, as well as statistical inference.

BIOLOGISTS ARE DROWNING IN DATA!!
“It took a year to isolate and sequence one gene from a red sponge when he began in the early 1980s... Within a few years, he was able to sequence 10 to 15 genes a year. Today, he can do 1000 overnight.”

From: This is your ancestor, Discover Magazine, Nov. 2004.
Clustering – a useful statistical idea

Fisher Iris Data – measurements on 3 species of iris
The 3 species
Some Uses of Clustering In Genomics

Genomic (Proteomic) Sequence

• Organisms which are more closely related have genes which are more similar
• Proteins which have similar function are more similar

Gene Expression

• Tissues which have similar gene expression are more similar
• Genes which have similar expression patterns over differing conditions work together
Similarity of Genomic Sequence

FFHPLECEPTLQMGFHSDQIS-VAA---AGPS--VNNN---
FFHPLDCGPTLQMGYPSDSLTAEEAASVAGPS--C--S---
FFHPLECEPTLQIGYQPDPIT-VAA---AGPS--VN-NYMP
FFHIPCEPTLQMGYQQDQIT-VAAA--AGPSMTMN-S---
FFQHIECEPTLHIGYQPDQIT-VAA---AGPS--MN-NYMQ
FFHPLECEPTLQIGYQHDQIT-IAA---PGPS--VS-NYMP

Each row represents a protein from a different species.
Each letter represents an amino acid.
Each – represents a space which is missing in this sequence but has something in it in a different species

In closely related species, the distance between genes is the number of mismatches.
In distantly related species, the sequences are given a score – often the probability that a random sequence matches as well.
A phylogeny of α-hemoglobin chains in a variety of vertebrate species, determined by calculating the number of nucleotide replacements that account for the number of observed amino acid substitutions presumed to have occurred during each evolutionary interval. The vertical scale, given in millions of years, is based on paleontological estimates for the age of the common ancestor of each branch. (From Goodman 1976.)
Similarity of Expression

Each circle is a dot of a strand of DNA on the surface of a microscope slide from 1 gene.

2 RNA samples from different tissues are processed and allowed to attach (hybridize) to the spots.

1 sample is labeled with RED dye and the other with GREEN.

The dye intensity is proportional to the amount of RNA in the sample.

RED implies the gene is expressing more highly from the RED sample.

Yellow implies about the same expression in both samples.

Green implies the gene is expressing more highly from the GREEN sample.
Each line represents RNA from 1 tissue sample. Pink line is unknown tissue. Distance is Euclidean distance, or 1-correlation, or …
Clustering Tissues

e.g. Normal, benign tumors, cancerous tumors

Take RNA samples from each type of tissue
Determine intensity of color on each array

Tissues are similar if the same genes are high or low in the RNA sample.

Can be used to “discover” tumor types.
Or, start from a known samples to “train” the clustering algorithm to recognize tissue type. Then classify unknown tissue samples.
Each line represents RNA from gene. Pink line is gene with unknown function. Distance is Euclidean distance, or 1-correlation, or …
Clustering Genes

Very few gene functions are known. How genes interact is unknown.

Hypothesis: Genes which have similar expression patterns (in different tissues or under different conditions) are related in function.
A Gene Network

http://www.faculty.ucr.edu/~mmaduro/network.htm
What do you need to know?

Statistics (applied and theoretical)
Probability
Computer Science

Genetics or biochemistry

Currently: at least an MS needed
Jobs

University
Genomics Research
Pharmaceutical Company
Medical Research
Anthropology
National Institutes of Health
Environmental Science
National Security
Agriculture
Forensic Science
And this is just the tip of the iceberg