The Semi-Nonstationary Process:
Model and Empirical Evidence

Chung-Ming Kuan
Institute of Economics
Academia Sinica

Yue-Lieh Huang
Department of Economics
National Taiwan University

Ruey S. Tsay
Graduate School of Business
University of Chicago

This version: September 21, 2001

† We thank Y.-T. Chen, R. Engle, C. Granger, C.-C. Hsu, C.-S. Mao and T. Teräsvirta for valuable suggestions and comments. C.-M. Kuan gratefully acknowledges research support of the National Science Council of the Republic of China (NSC-89-2415-H-001-037 and H-001-071). The work of RST is supported by the National Science Foundation and the Graduate School of Business, University of Chicago.
Abstract

In this paper we propose a class of models in which the effect of an innovation may be permanent or transitory, depending on an unobservable state variable that follows a first order Markov chain. This model can describe stationary and non-stationary characteristics at different time periods. It also permits shifts in the deterministic trend such that different trending patterns are associated with innovations having distinct effects. The process generated from the proposed model is referred to as the semi-nonstationary process. We first show some properties of this process and derive an estimation algorithm. A simulation-based test is then proposed to distinguish between the proposed model and a random walk. In empirical application, we apply the proposed model to U.S. real GDP and find that 83 percent of the shocks to real GDP are likely to have permanent effects. Moreover, the periods that are likely to be in the state of permanent (transitory) shocks match closely to the expansion (recession) periods identified by NBER.

Keywords: Markov trend, permanent shock, regime switching, semi-nonstationary process, transitory shock, trend stationarity, unit root

JEL Classification: C22. C51