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Abstract: 
 
Geographical surveillance for hotspot detection and delineation has become an important area of 
investigation both in geospatial ecosystem health and in geospatial public health. In order to find 
critical areas based on synoptic cellular data, geospatial ecosystem health investigations apply recently 
discovered echelon tools. In order to find elevated rate areas based on synoptic cellular data, geospatial 
public health investigations apply recently discovered spatial scan statistic tools. The purpose of this 
paper is to conceptualize a joint role for these together in the spirit of a cross-disciplinary cross-
fertilization to accomplish more effective and efficient geographical surveillance for hotspot detection 
and delineation, and early warning system. 
 
Keywords: Atlantic slope watersheds, critical areas, early warning system, echelon analysis, elevated 
rate area identification, hotspot detection and delineation, landscape analysis, spatial scan statistics. 
 
1. Introduction  
 
Geographical surveillance for hotspot detection and delineation has become an important area of 
investigation both in geospatial ecosystem health and in geospatial public health. In order to find 
critical areas based on synoptic cellular data, geospatial ecosystem health investigations apply recently 
discovered echelon tools. In order to find elevated rate areas based on synoptic cellular data, geospatial 
public health investigations apply recently discovered spatial scan statistic tools. The purpose of this 
paper is to conceptualize a joint role for these together in the spirit of a cross-disciplinary cross-
fertilization to accomplish more effective and efficient geographical surveillance for hotspot detection 
and delineation, and early warning system. 
 
The spatial scan and echelon methods are applicable, and can be valuable, in various areas of concern, 
such as: (1) disease epidemiology with prevalence, incidence, or mortality data, (2) medical imaging 
involving brain scan or mammography for the breast, (3) reconnaissance involving mine fields of 
antipersonnel mines or deposits of mineral, oil, or uranium, (4) astronomy involving stars or galaxies, 
(5) archaeology and history involving geography of pottery or odontological feature, (6) biodiversity 
issues involving species-rich and species-poor areas, (7) urban and regional planning involving 
distribution of population and businesses, (8) regional studies involving water resources at watershed 
scales, (9) power lines and electromagnetic effects on objects around, and (10) networks of water 
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distribution systems, subway systems, and road transportation systems. The thrust of this paper is 
focused on biodiversity, ecosystem health and human health. 
 
2. Echelon Analysis for Critical Areas 
 
Quantitative spatial data are important data sources of many environmental process models to 
determine future implications of current resource use, policies, and interventions.  End products of 
applying such models are often mappings of indices for level of potential environmental impact, which 
then become guides to allocation of economic and technical resources for amelioration.   
 
Errors in quantitative spatial data layers will propagate through environmental models and find 
expression in the resulting indexes of environmental impact.  However, the consequences of such 
errors for decision-making may well depend upon where the errors occur.  There may be relatively 
little confusion introduced by moderate errors occurring in a vicinity that otherwise has consistently 
high values of a variable.  In contrast, errors compound confusion in areas that are highly variable.  
Errors can also substantially distort the apparent state of areas that otherwise have consistently low 
values of a variable.   
 
It is therefore desirable to have a systematic means of determining spatial organization in mappings of 
quantitative variables, both for quantitative input variables to environmental models and for indexes of 
potential impact generated by the models.  Contemporary computer capabilities for visualization of 
surfaces are helpful in this regard, but their interpretation is substantially subjective.  Echelons present 
an innovative alternative for objectively determining quantitative spatial structure for direct mapping 
either with or without computer-assisted visualization (Johnson et al.,1998; Kurihara et al., 2000; 
Myers et al., 1997,1995,1999; Patil and Taillie, 1999; Ramakomud, 1998; Rodriguez-Iturbe and 
Rinaldo, 1997). Thus, they can facilitate analysis of implications of errors associated with 
environmental models that take quantitative layers as input, or produce quantitative output layers, or 
both.  
 
The tessellated cellular surfaces arise, also when one records values on each cell, even if without any 
modeling or measurement error. The records may consist of counts or rates of events of interest. 
 
Echelons of Spatial Variation 
 
The spatial variables for echelon analysis can be considered as topographies, whether real or virtual.  
Such terrain information is typically formatted for processing in a geographic information system 
(GIS) as a digital elevation model (DEM). This comprises a raster in which an `elevation' value is 
specified for the center of each cell.  Echelons divide the (virtual) terrain into structural entities 
consisting of peaks, foundations of peaks, foundations of foundations, and so on in an organizational 
recursion.  Saddles determine the divisions between entities.  Each entity is assigned an echelon 
number for identification purposes.  The peaks constitute one series of structural entities, being 
numbered in decreasing order of summit elevation.  The foundations constitute a second series of 
entities that are likewise numbered in order of decreasing top level, starting with the next number after 
that assigned to the lowest peak.  Consider, for example, the following terrain depicted in profile with 
division as seen in Figure 1. 
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Figure 1. 
The numbered entities thus determined are called echelons.  Echelons are determined directly by 
organizational complexity in the spatial variable, and not by either absolute `elevation' or steepness. 
 
Echelons form extended families of terrain entities having a genealogy similar to that of an extended 
human family, except that each echelon has only one parent.  In the case of echelons, an entity that 
rises from another is more aptly termed an`ascendant' than a `descendant'.  Likewise, a `parent' entity is 
termed a `founder'.  The echelon relations determine a family tree as illustrated in Figure 2. 
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Figure 2. 
 
This is a 'scaled tree' in the sense that the height of each vertical edge corresponds to the height of the 
echelon above its founder (parent).  The cumulated height above the root is the height of the terrain.  
The number of 'ancestors' for an echelon is a local measure of regional complexity. 
 
The echelons also comprise a structural hierarchy of organizational orders.  The orders of the hierarchy 
are assigned and numbered in the same manner as for a network of streams and tributaries (Rodriguez-
Iturbe and Rinaldo, 1997).  Thus, peaks are akin to unbranched tributaries, and have order 1.  A 
foundation for two or more order 1 entities is of order 2.  Likewise, a foundation for two or more order 
2 entities is of order 3.  A low order entity (see 5 in Figure 1) sharing a foundation with a higher order 
entity does not increase the order of the foundation.  This is like the case of an unbranched tributary 
entering a higher order stream. 
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Echelon Characteristics 
 
A suite of form attributes can be determined for each echelon, including area extent of the basal slice 
and vertical projection above its founder.  Some form attributes may depend upon an interval scale of 
measure for the vertical dimension, but the echelon decomposition only requires an ordinal scale of 
measurement.  A standard table of echelon characteristics contains a record (row) with ten fields for 
each echelon, including echelon ID number, order, founder, maximum level, minimum level, relief, 
cells, progeny, ancestors, and setting within the tree.  The table is associated with an echelon map file 
giving the 'level' value and echelon ID number for each cell.  Echelons thus formalize the structural 
complexity of the (surface) variable without incurring any loss of information with respect to (surface) 
level.   
 
Species Rich Areas for Biodiversity Monitoring and Assessment 
 
As an important component of biodiversity monitoring, species richness is a response variable of 
considerable interest in conservation biology. Monitoring over a large spatial extent requires an 
objective method for characterizing the spatial distribution for species richness. Objectivity is needed 
for delineation of areas that are relatively species rich or poor, and to also provide a way to compare 
other spatial distributions, as with temporal monitoring for change detection.  
 
Johnson et al. (1998) apply the echelon method to the characterization of breeding bird species richness 
across the state of Pennsylvania, using USEPA EMAP hexagons of 635 km². The statewide echelon 
map is presented in Figure 2a.  
 

 
Figure 2a. Statewide echelon map based on EMAP hexagons. The 4-digit number in each hexagon is 
the EPA-EMAP identifier, while the number below is species richness. 
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Regions of high species richness relative to their surroundings in a statewide perspective are delineated 
by complexes of the first order and second order echelons. General correspondence can be seen with 
the thematic map in Figure 2b.  
 

 
Figure 2b. Bird richness in the hexagons. 

Note that the boundaries of regionally high areas in Figure 2b are not clearly defined, whereas the 
echelon objects of Figure 2a serve to objectively define such boundaries.  
 
Johnson et al. (1998) further analyze selected species rich areas at the hexagon 635 km² scale at a much 
finer scale of the breeding bird atlas blocks of 24 km² scale to help with biodiversity assessment in 
terms of explanatory variables at a finer scale responsible for the species richness in species rich areas 
at a higher coarser scale.   See Figure 2cde. 
 

 
Figure 2cde 
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3. Echelon Trees, Principal Families, and Upper Echelons 
 
Since most echelon trees are much too complicated for visual study as dendrograms, characterization 
and comparison of echelon trees is done through analytical processes such as pruning. (Myers and Patil 
2002). The current stage of development for echelon information technology provides a mature 
descriptive capability for characterizing quantitative spatial variables.  A major question concerning 
quantitative spatial variables with respect to many applications is whether there are substantial sectors 
of the surface having particularly high or particularly low values relative to the mean level.  These are 
the 'uplands' and 'lowlands' of the virtual surface.  Currently the manager or investigator is obliged to 
resort to subjective examination of visualizations on maps and/or computer displays in an attempt to 
gain such insights regarding what should be 'focal' areas. 
 
In the domain of echelons, candidate focal areas may be conceptualized as principal families and the 
sectors that they occupy can be considered as being principalities.  The information needed for 
determining principal families resides in the echelon table and tree representation.  Once the principal 
families are identified, the sectors that they occupy can be extracted by exploiting the linkage between 
the echelon map and echelon table.  Analytical and computational strategies need to be formulated for 
segregating the principal families from what typically are, hundreds of upper-level echelon families. 
 
Probabilities based on a null model using a planar random process could allow the user to specify a 
criterion for areas of potential concern to be extracted computationally.  In other words, an echelon 
family would be seen as a candidate for focus if the probability of its extent receiving observed 
amounts is less than the criterion under a random distribution of quantity over area. 
 
Since echelon determination is computationally intensive, there would be further advantage in 
capability to extract principal families from partially determined echelons.  This scenario would 
terminate the top-down progression of echelon determination for an area when the probability of 
observing encountered values under planar randomization exceeds the criterion level.  The echelon 
table would then consist of a series of subtrees, with a subtree for each principal family. 
  
Echelons synthesize the topological structure of synoptically mapped environmental indicators in a 
regional context for comparative purposes and for objective analyses of complex hierarchies of spatial 
variation across landscapes.  The environmental indicator is regarded as a surface variable that 
represents a virtual topography as depicted (in one-dimensional profile) in Figure 3.  Echelons are 
structural entities consisting of peaks, foundations of peaks, foundations of foundations, and so on in an 
organizational hierarchy.  It is natural to display the echelon hierarchy as a tree and, in this form, 
echelons have proven effective for elucidating patterns of concentration and connectivity for 
biodiversity, landscape change, urban sprawl, etc. (Myers et al., 1995, 1997; Myers et al., 1999; 
Kurihara et al., 2000; Smits and Myers, 2000; Myers and Patil, 2002). 
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Figure 3.  Echelon decomposition of a surface (left) and associated echelon tree (right).   

  
Upper Echelons 
 
The following computational strategy for upper echelons uses these informational properties: 
 

o The echelon table records the extent and top height of each echelon. 
o Any path through the tree of foundation relations also orders the echelons by top height. 

 
We first want to suppress the echelons that are entirely below the mean level for the population of 
cells.  To do so, we progressively suppress echelons in order of increasing top height.  As the 
suppression proceeds, we track the cumulative number of cells suppressed and stop when the next 
echelon would cumulatively encompass more than half the cells.  This has the effect of pruning the tree 
from the bottom, leaving a series of subtrees as prospective upper echelons. 
 
We suppress all remaining cells having height less than or equal to the greatest top height for a 
suppressed echelon.  We will have thus suppressed topologically (objectively) determined lower levels 
of the surface. 
 
We assign the remaining cells identification numbers that indicate membership in subtrees.  We then 
cumulate the surface levels over cells within in each subtree, and reassign subtree sequence numbers 
according to decreasing cumulatives.  We retain up to 250 of the highest ranking subtrees as principal 
families that can be mapped as a one-byte binary image. 
 
We prepare a color lookup table for rendering the principal families in which red intensity expresses 
top height, green intensity expresses area extent of family, and blue expresses complexity of the family 
according to number of family members. 
 
The image of principal families is then presented to the user via GIS for interactive query and 
investigation. 
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4. Spatial Scan Statistic Analysis for Elevated Rate Areas 
 
The spatial scan statistic was developed as a surveillance tool to detect and test the significance of local 
disease clusters, without making prior assumptions about their location or size, and adjusting the 
inference for the multiple testing inherent in the many potential sizes and locations considered. In 
mathematical terminology it is defined in terms of using a scanning window of any shape (Kulldorff, 
1997), but it has so far been implemented using a circular scanning window.  
 
The method imposes a circular window on the map and lets its center move over the area so that at any 
given position, the window includes different sets of neighboring counties. If the window contains the 
centroid of a census area, then that whole census area is included in the window. For practical reasons, 
the center of the window is positioned only at the census tract centroids, and at each position, the 
radius of the circular window is varied continuously from zero up to a maximum radius so that the 
window never includes more than 50 percent of the total population. In this way, the circular window is 
flexible both in location and size. In total, the method creates a very large number of distinct circular 
windows, each with a different set of neighboring counties within and each a possible candidate for 
containing a cluster. For each window, the method tests the null hypothesis against the alternative 
hypothesis that there is an elevated risk of the event within the window compared to outside. 
 
For each circle, the observed and expected number of cases inside and outside the circle is noted, and 
the corresponding likelihood is calculated. This likelihood is then maximized over all circles, 
identifying the window that constitutes the most likely disease cluster. The likelihood ratio for this 
window is noted and constitutes the maximum likelihood ratio test statistic. Adjusting for the multiple 
testing of multiple cluster locations and sizes, its distribution under the null-hypothesis and its 
corresponding p-value are obtained by repeating the same analytic exercise for 9999 random 
replications of the data set generated under the null hypothesis, in a Monte Carlo simulation. 
Calculations can be performed using the SaTScan software (SaTScan) developed at the National 
Cancer Institute specifically to implement the spatial scan statistic. 
 
The spatial scan statistic has the following features, which make it particularly suitable for 
geographical surveillance: (1) it adjusts both for the inhomogeneous population density and for any 
number of confounding variables; (2) by searching for clusters without specifying their size or location 
the method ameliorates the problem of preselection bias; (3) the likelihood ratio based test statistic 
takes multiple testing into account, and delivers a single p-value for the test of the null hypothesis; and 
(4) if the null hypothesis is rejected, we can specify the approximate location of the cluster that caused 
the rejection. 
 
The spatial scan statistic deals with the following situation.  A region R of Euclidian space is tessellated 
or subdivided into cells that will be labeled by the symbol a .  Data is available in the form of a count 

aY  (non-negative integer) on each cell a .  In addition, a “size” value aA  is associated with each cell 
a .  The cell sizes aA  are regarded as known and fixed, while the cell counts aY are independent 
random variables.  Two distributional settings are commonly studied: 
 
1)  Binomial 
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 aA  = aN  is a positive integer and aY ~ Binomial ( aN , ap ), where ap  is an unknown parameter 
attached to cell a  with  10 << ap  . 

2)  Poisson 
aA  is a positive real number and aY  ~ Poisson ( aλ aA ), where aλ > 0 is an unknown parameter 

attached to cell a . 
 

Each distributional model has a simple interpretation.  For the binomial, a collection of 
aN  items resides in cell a  and each item has a certain trait independently with probability ap .  The 

cell count aY  is the number of items having the trait.  For the Poisson, aA  is the size (perhaps 
hypervolume) of the cell a, and aY  is the realized number of points in a Poisson process of intensity aλ  
across the cell.  
 
The spatial scan statistic seeks to identify “hotspots”, i.e., “clusters” of cells that have an elevated 
response compared with the rest of the region. However, by elevated response we do not mean large 
values for the raw counts aY ; instead, we mean large values for the rates, 

/a a aG Y A= . 
In other words, the cell counts are adjusted for cell sizes before comparing cell responses.  The scan 
statistic easily accommodates other rate adjustments, such as for age or for gender.  In some situations, 
one also wishes to find regions of low response; this is easily accomplished by reversing the direction 
of the rate function. 
 
A collection of cells from the tessellation should satisfy several geometrical properties before it could 
be considered as a candidate for a hotspot cluster.   First, the union of the cells should comprise a 
connected subset of the region R.  All such collections of cells will be referred to as zones and the set 
of all zones is denoted by Ω .  Thus, a zone Z ∈Ω  is any collection of cells that are connected.  
Second, the zone should not be excessively large. Otherwise, the zone instead of its exterior would 
constitute background.  This restriction is generally achieved by limiting the search for hotspots to 
zones that do not comprise more than, say, fifty percent of the population. 
 
 

 
Figure 4.  A tessellated region.  The collection of shaded cells in the left-hand diagram is connected 
and, therefore, constitutes a zone in Ω .  The collection on the right is not connected. 

The following hypothesis testing scenario formalizes the cluster detection and delineation problem. For 
definiteness, we use the binomial distributional setting. 

0H : ap  is the same for all cells in region R , i.e., there is no cluster. 
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1H :  There is a non-empty zone Z (connected union of cells) and parameter values 
         1,0 10 << pp  such that 

              1

0

for all cells  in Z
for all cells  in a

p a
p

p a R Z


=  −
         and     01 pp > . 

The zone Z specified in 1H  is an unknown parameter of the model. The full model, 0 1H H∪ , involves 
three unknown parameters: 
 

0 1 0 1, ,    with     and  Z p p Z p p∈Ω ≤ . 
 

The null model, 0H , is the limit as 1 0p p→ ; however, the parameter Z is not identifiable in the limit.  
For given Z, the likelihood estimates of 0p  and 1p  can be written down explicitly which allows us to 
determine the profile likelihood for Z: 
 
 

0 1
0 1 0 1,

ˆ ˆ( ) max ( , , ) ( , , )
p p

L Z L Z p p L Z p p= = . 

The difficult part of hotspot estimation lies in maximizing ( )L Z as Z varies over the collection Ω  of all 
possible zones.   
 
The SaTscan performs a conditional likelihood ratio test, conditional on the sum ∑Υ=Υ a  with aN  

and ∑= aNN  known and fixed. The simulation performs the independent identical realizations of the 

data set ∑Υ=Υ a given. This turns out to be the classical multivariate hypergeometric in the Binomial 
Model and multinomial in the Poisson Model. It is interesting to observe here the role of sum-
symmetric distributions as defined in Patil and Ratnaparkhi (1988), Joshi and Patil (1970), and 
Janardan and Patil (1972). 
 
A primary advantage of spatial scan statistics is that the approach is designed specifically to detect 
clusters and test their significance. The cluster sizes and regions do not have to be specified in advance. 
The hypotheses are clearly defined, and the test statistic is based on a likelihood ratio, and not on an ad 
hoc procedure.  
 
5. Comparative Features of Echelons and Satscans 
 
Contemporary study of human disease as a component of ecosystem health entails the spatial scan 
statistic (Kulldorff and Nagarwalla, 1995) for detecting geographic clusters of disease and other 
responses that are significantly elevated with respect to the regional setting.  In conjunction with the 
circular spatial scan statistic, echelon analysis can more clearly delineate the cluster boundaries for 
focus of investigation.  A primary advantage of the spatial scan statistic is that the approach is designed 
specifically to detect clusters and test their significance.  The cluster sizes and regions do not have to 
be specified in advance.  The hypotheses are defined precisely, and the test statistic is based on a 
likelihood ratio and not on some ad hoc index. 
 
The spatial extent of a disease cluster can reflect physical and man-made features of the environment 
such as rivers, highways, wind patterns, and topography (highlands versus lowlands).  The circular 
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scan statistic, which is designed to detect compact clusters, provides poor delineation of irregularly 
shaped clusters resulting from such features (Figure 5).  Irregularity of shape can also reduce the 
detection power of the circular scan statistic, or force it to report a single irregular cluster as a series of 
small clusters (Figure 6). 
 

Cholera outbreak along a river flood-plain
•Small circles miss much of the outbreak
•Large circles include many unwanted cells

Cholera outbreak along a river flood-plain
•Small circles miss much of the outbreak
•Large circles include many unwanted cells  

Figure 5.  Circular spatial scan statistic zonation. 

 

Circular zones may represent a 
single cluster as multip le clusters 
Circular zones may represent a 
single cluster as multip le clusters 

 
Figure 6.  Circular scan statistic represents a single actual cluster as a series of small clusters. 

 
Consider a tessellation of a geographic region with a response value assigned to each cell of the 
tessellation.  Echelon analysis is an objective means of analyzing the spatial structure of the response 
function. In environmental and remote sensing applications, the tessellation is often regular (for 
example, pixels in an image or EMAP hexagons) but the basic logic of the method does not require 
this.  Examples of environmental response functions include:  (i) grey-scale level in a raster image, (ii) 
a pixel-referenced index of change between two images, (iii) abundance of a species across a cell, and 
(iv) species richness across a cell. 
 
There is an analogy between echelon analysis and Morse theory.  The latter considers smooth response 
functions ( )G x  defined over a differentiable manifold.  For each value g  of the response function, the 
“upper level set” is defined as { : ( ) }x G x g≥ .  Morse (1934) studied how the topological structure 
(specifically, the higher order connectivity) of the upper level sets changes as the level g  decreases; 
see Milnor (1963) and Matsumoto (2002).  
  
In echelon analysis, the response function G  is defined over a finite set M  of cells instead of a 
differentiable manifold.  The differentiable structure on M  is replaced by a nearest-neighbor structure.  
For example, a raster image has two standard nearest-neighbor structures depending on whether 
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diagonally adjacent cells (pixels) are considered to be neighbors.  A “path” in M  is then a sequence of 
cells in M  with the property that every two consecutive cells in the sequence are nearest neighbors. A 
subset Z  of M  is “connected” if any two cells in Z  can be joined by path that lies entirely within Z .  
Every subset X  of M  can be written uniquely as a disjoint union of maximal connected subsets called 
the connected components of X .  The term “connectivity” of X  refers to the number and identity of 
the connected components Z  of X . 
 
Echelon analysis studies how the connectivity of the upper level sets { : ( ) }x G x g≥ changes as the level 
g  decreases.  For example, if the response is species richness in a cell then for large values of g  the 
upper level set may consist of a few isolated pockets of high species richness.  As g decreases, 
corridors of lower richness may join up these pockets.  This changing pattern of connectivity can be 
quite varied and complex.  At the simplest, there might be only one primary region of high richness 
that grows by gradually accumulating neighboring cells as g  decreases.  A slightly more complex 
pattern has two primary regions, each growing by gradually accumulating their neighboring cells, but 
which do not join up until g  is very small.  Echelon analysis represents each of these various patterns 
as a rooted tree with a height function defined on the nodes of the tree.  Nodes at height g are in 
one-to-one correspondence with the connected components of the upper level set { : ( ) }x G x g≥ . 
 
Echelon analysis may be used in conjunction with the spatial scan statistic to more clearly delineate 
cluster boundaries, since echelon families identify the spatial connectivity of a response surface.   For 
example, two isolated first order echelons may be connected by a common second order echelon, as 
identified by “saddle point” mapping units.  Echelons at any hierarchical level may be tested for 
statistical significance by the spatial scan statistic approach.   Therefore, the combination of these two 
different methods will result in the determination of spatially disjoint areas of significantly elevated 
disease rates.  Essentially, echelon analysis mechanizes and objectifies the way a person may look at a 
map and quickly determine a reasonable set of candidate zones, while eliminating many other zones as 
obviously uninteresting. 
 
Therefore, echelon analysis used in conjunction with the spatial scan statistic may improve disease 
surveillance for programs that currently apply the scan statistic. For example, we have revisited the 
North Carolina SIDS mortality data over counties during 1974–84 analyzed by Kulldorff (1997).  The 
following diagrams show the hotspot results of the two approaches based on circles and echelons as the 
choices for candidate zones. It would be interesting to conduct several comparative investigations. 
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6. Atlantic Slope Watersheds: Disturbance and Vulnerability Pixels 
 
Definitions of Disturbance and Vulnerability 
 
In order to delineate disturbed, vulnerable pixels, two criteria must be established:  
• Land uses or land use patterns which are considered to be indicative of human alteration of the 

landscape, or “disturbance”, and  
• Landscape parameters that indicate susceptibility to adverse environmental impact, or 

“vulnerability”.   
Specific criteria are listed as follows. 
  
Disturbance 
 
The most basic indication of potential alteration of the land surface from its natural condition is a 
change in land cover from forested to other cover types which are indicative of various human 
activities. Land cover, therefore, is assumed to be representative of land use.  In addition, land use/land 
cover is one piece of information that is universally available in the study area, and is thus a convenient 
indicator of the extent of human disturbance. Land cover data that were used in this study were 
produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. 
Environmental Protection Agency (USEPA) to produce a consistent, land cover data layer for the 
conterminous U.S. based on Landsat Thematic Mapper (TM) data.  National Land Cover Data (NLCD) 
were developed from TM data acquired by the Multi-Resolution Land Characterization (MRLC) 
Consortium.  The MRLC Consortium is a partnership of federal agencies that produce or use land 
cover data.  Partners include the USGS (National Mapping, Biological Resources, and Water 
Resources Divisions), USEPA, the U.S. Forest Service, and the National Oceanic and Atmospheric 
Administration (Loveland & Shaw 1996).  The goal of the MRLC is to provide data across a range of 
spatial and temporal scales for the analysis and monitoring of environmental change (Loveland & 
Shaw 1996).  Spatial resolution, or pixel size, is 30m on a side (900 m2) and the images were 
preprocessed to correct for electronic problems and geographic referencing by the MRLC.  Images for 
the mid-Atlantic region were acquired from dates ranging from 1989 to 1994. 
 
The general NLCD procedure is to classify regions from mosaiced TM scenes using spectral 
information (Vogelmann et al. 1998, and Brown et al. 1993).  The initial classification was then 
interpreted and corrected using any number of ancillary data sets that include: aerial photographs, 
Digital Terrain Elevation Data (DTED) and derived slope, aspect and shaded relief; population and 
housing density data from census data; USGS land use and land cover (LUDA); and National Wetlands 
Inventory (NWI) data if available.  Other ancillary data sources may include soils data, unique state or 
regional land cover data sets, or data from other federal programs such as the National Gap Analysis 
Program (GAP) of the USGS Biological Resources Division (BRD).   Frequently derived data sets 
based on the TM data were also used to separate confusing areas, for example the normalized 
vegetation index (NDVI) and various TM band ratios.  To help discriminate areas seasonally different 
two distinct TM mosaics are produced, a leaves-on version (summer) and a leaves-off (spring/fall) 
version.  The first NLCD version for the mid-Atlantic region was completed in 1996.  Based on local 
user input and new ancillary data sets, improvements, on a state-by-state basis, have continued and the 
currently available version was updated in April 2000.  The NLCD presents 25 land cover classes in 
the Mid-Atlantic region, corresponding to Level I and II Andersen Land Cover/Land Use categories 
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Anderson et al., 1976.  These were subsequently grouped into 9 more general classes, considered to be 
more appropriate for our assessment, as presented in Table 1. 
 
Table 1. Land cover/land use classes utilized in the Atlantic Slope project, and their corresponding 
NLCD classes. 

Atlantic Slope NLCD – Anderson 1 NLCD – Anderson 2 
 

Water Water 11 Open Water 
Not Applicable  12 Perennial Ice/Snow 
   
Suburban Developed 21 Low Intensity Residential 
Urban  22 High Intensity Residential 
Urban  23 Commercial/Industrial/Transportation 
   
Rock Barren 31 Bare Rock/Sand/Clay 
Rock  32 Quarries/Strip Mines/Gravel Pits 
Transitional  33 Transitional 
   
Forest Forest Upland 41 Deciduous Forest 
Forest  42 Evergreen Forest 
Forest  43 Mixed Forest 
   
Forest Shrubland 51 Shrubland 
   
Row Crops Non-natural Woody 61 Orchards/Vineyards/Other 
   
N-A Herbaceous Upland 71 Grasslands/Herbaceous 
   
Pasture Herbaceous Planted/Cultivated 81 Pasture/Hay 
Row Crops  82 Row Crops 
N-A  83 Small Grains 
N-A  84 Fallow 
Suburban  85 Urban/Recreational Grasses 
   
Forest Wetlands 91 Woody Wetlands 
Emergent Wetlands  92 Emergent Herbaceous Wetlands 
 
It is generally assumed that pre-colonial land cover in the majority of the Mid-Atlantic region consisted 
of forest, naturally-occurring waterbodies, wetlands, and rock.  Although specific forest type has been 
altered over the entire region due to widespread clear-cutting in the latter part of the 19th century, 
mature forest, along with the other classes listed above, is assumed to represent the least humanly 
altered type of landscape.  In the Mid-Atlantic, dominant human activities which alter land use are 
agriculture and urbanization.  While other human activities certainly exist, e.g., mining, agriculture and 
urbanization represent the largest visible footprint of human activity in this region.  Any study of the 
impact of human activity on aquatic resources should thus investigate the marginal distribution of land 
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use in the study watersheds based on these three land use classes: agriculture, urban, or forest. These 
classes could clearly be further subdivided, for example the impacts of row crops are different than 
those of pasture, which are both lumped into agriculture under this classification system. But for the 
purpose of devising a simple but still informative watershed classification system, these three 
categories seemed broad, but still distinct and ecologically relevant. 
 

 
Figure 8.  Ternary plots of watersheds of Atlantic Slope by physiographic province. 

 
As a way to visually represent the composition of land use in watersheds by these three categories, we 
plotted watersheds on a ternary plot. Like the triangular graphs used to plot soil types based on the 
composition of sand, silt, and clay, these diagrams have three axes, one each for the percentage of 
agriculture, urban, or forest land cover in the watershed. We plotted all of the study area watersheds on 
ternary plots by the five study area Physiographic Provinces: Coastal Plain, Piedmont, Glaciated and 
Non-glaciated Appalachian Plateau, and the Ridge and Valley.  Distribution of land cover within the 14 
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digit HUC watersheds are depicted, for each physiographic province, in ternary plot format in Figure 8. 
In the Mid-Atlantic, it is obvious from these plots that land use departs from forested along two major 
trajectories: conversion of forested to agricultural use, or conversion of forested to urban land use. 
 
However, for the purposes of this analysis, we are not concerned with the actual direction of the 
trajectories, only that a departure from reference (i.e., forested) has occurred. Therefore, we need only 
to split the land cover into two categories: natural or disturbed. As was discussed previously, natural 
land covers are considered to be forest, water, and wetlands land cover classes. All other uses are 
considered to be altered by human activity.  For these reasons, all land covers other than forested, 
water, and wetland are considered to be “disturbed”. 
 
Vulnerable 
 
A primary goal of the Atlantic Slope project is the development of an intellectual model relating human 
activity to aquatic resource condition.  This implies a relationship between land use in the watershed 
(as a source of environmental stressors) and the receiving water body (the sink).  Relevant 
characteristics of the source are the type of stressors generated, and their magnitude.  Therefore, if we 
utilize the definition of “disturbance” developed in the previous section, we also need a descriptor of its 
magnitude as an indicator of connection between land use and aquatic resources.  A primary 
determinant of the magnitude of a stressor (e.g., nutrient enrichment, sedimentation) derived from a 
specific land use is the slope of the land surface. In general, higher slope areas represent a greater risk 
of adverse environmental impact from human disturbance. For example, higher slope leads to 
decreased infiltration, increased runoff, rapid runoff, and minimal contact time between runoff and soil 
for remediation and/or impact.  We recognize that in some instances, steep slopes can represent a lower 
risk for some environmental stressors, such as susceptibility to atmospheric deposition.  However, 
since the project is primarily concerned with water-mediated processes, we generally assume that 
higher slope areas represent a greater risk for adverse environmental impact associated with human 
disturbance. 
 
The U.S. Natural Resources Conservation Service (NRCS) maps soil types in three major slope classes:  
0-3%, 3-8%, and >8%.  Applications such as the Universal Soil Loss Equation (USLE) utilize these 
major classes in predicting soil loss through erosion, and a number of other applications utilize similar 
classes to predict hydrologically derived processes such as nutrient transport.  In general, without 
regard to soil type, higher slope areas represent a greater risk of adverse environmental impact from 
human disturbance.  
 
There is a clear connection between land uses and slope.  For example, high slope areas (>8%) are not 
generally used for row crop agriculture or urban areas, since lower slope areas are more feasible and 
cost effective.  Agricultural activities on higher slope areas require specialized practices to minimize 
soil loss, loss of soil additives such as herbicides and pesticides, and are generally not recommended by 
conservation agencies such as NRCS.  However, human activities such as agriculture and urban use do 
occur on a range of slopes from 0-8%. Given the existence of two slope classes within this range (0-3% 
and 3-8%), we consider human activities on slopes of 3-8% to be vulnerable. 
 
A special note is required for the Coastal Plain physiographic province.  Slopes greater than 3% do not 
occur in the Coastal Plain.  In addition, it is likely that the definition of disturbance would need to be 
specifically defined for this province, since the nature of human disturbance is unique.  Most of the 
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regions large urban centers occur on the Coastal Plain, along large rivers.  The nature of these activities 
are radically different from those upstream in the other physiographic provinces, and are not 
adequately described by the definitions utilized in this exercise.  Therefore, the Coastal Plain is not 
included in this assessment. 
 
7. Atlantic Slope Watersheds: Nodes, Nodal Variance, and Disturbance Nodes  
 
Given the nature of the Atlantic Slope project, and its aquatic resource mandate, it was critical to 
investigate other landscape metrics that could assist in the elucidation of the relationship between land 
use and aquatic resource condition. While many studies have found watershed-wide land use to be 
helpful in the prediction of various impacts, a more specific characterization of the riparian area was 
desired, given its proximity to the stream and its potential impact on stream condition.  Therefore, a 
more specific characterization of human disturbance in the riparian area was required. 
 
It must be noted that a primary objective of our research is the relationship between human activities 
and aquatic resource condition.  Therefore, the manner in which we characterize the landscape must be 
compatible with the manner in which we measure condition.  Ecological condition of streams and 
wetlands is determined at an individual point in the stream, and is assumed to vary more or less 
continuously along the length of the stream to the next sampled point.  Thus, ecological condition is an 
attribute associated with a point.  This determines the form of the associated landscape metric, which 
must also be associated with a point to be compatible with the ecological characterization.  The next 
question is obviously the shape of the bounded area, which should satisfy the following constraints 
(Schuft et al., 1999).  The bounded area should: 
• Adequately capture the stream network; 
• Be conceptually defensible in relation to the functions being considered; 
• Capture most of the riparian vegetation and an appropriate amount of surrounding land use to allow 

for associative analysis; and 
• Be cost-efficient. 
 
Thus, the concept of a circle emerges, where relevant landscape properties are measured and attributed 
to the center point.  A number of studies have utilized a circular bounded area for determination of 
landscape metrics associated with ecological and physical processes, with good success.  Thus, we 
utilize the concept here. 
 
The next question is the location of the circles themselves.  Certainly, we strive to increase the power 
of the relationship between landscape metrics and ecological condition of streams, and therefore 
consider bounded areas physically neighboring the aquatic resource of concern. Once we narrow our 
view to the riparian corridor (that area buffering the stream on either side, and of undetermined width), 
two locations present themselves for consideration.  The first are locations which have been 
ecologically characterized during previous investigations.  Unfortunately, these locations are often 
randomly selected along the entire length of a stream, and may not be as informative as one wishes.  
These points are often thinly distributed, with only minimal representation of a high number of stream 
miles.  For example, a point may be located in a section of a stream, downstream of a number of 
tributaries draining watersheds with varying land uses. Any specificity or direct correlation between 
specific land uses and aquatic condition is lost.  The second is at stream convergences, or those points 
which represent connections of the stream network.  We hereby term these locations nodes, since they 
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satisfy the common use of the term as intersections areas of corridors, and as sources or sinks of 
flowing objects (Forman and Godron, 1986).  In this context, nodes function as relayers of water 
movement, rather than as ultimate destinations. Nodes offer a number of advantages as locations at 
which to describe land use.  As indicated previously, they have a near stream location, suggesting that 
more precise landscape metrics can be calculated. However, their main advantage is their amenability 
to network analysis.  Nodes are a direct reflection of the complexity of the drainage network, and will 
increase in density along with the drainage complexity. 
 
Nodes were placed at convergences of stream tributaries of third order (Strahler method) or higher, as 
depicted in Figure 9. First and second order stream nodes were not utilized for the following reasons: 

- At least in some physiographic provinces, such as the Ridge and Valley, headwaters are less 
impacted or mostly forested. Use of the 1st order nodes might under-represent the actual impact 
in the watershed. 

- First order streams were not represented consistently in the streams coverage throughout the 
study area, and are really only available in Pennsylvania. Therefore, in Pennsylvania nodes 
were selected that were not headwaters, where in other states all nodes were used. 

- Feasibility of analysis was reasonable utilizing nodes on third order streams and higher. 
Inclusion of the 1st and 2nd order nodes doubled the number of nodes in Pennsylvania (where 
these streams were represented in the stream coverage). 

 
The next criterion to be established was the size of the bounded area to be characterized at the node.  
Based on previous work, we established circles of three radii for assessment:  1 km, 2 km, and 4 km.  
Analysis of landscape metrics of the three circle sizes showed that the highest resolution of differing 
land uses occurs with the 1-km radius circle; landscape metrics based on the 2 and 4 km radius circles 
begin to converge on watershed-wide values.  Depiction of the 1-km circles centered on the nodes is 
presented in Figure 9.  Calculation of landscape metrics at these nodes, rather than watershed-wide 
values, allows statistical descriptions of the watershed to be assessed, since a population of nodal 
values is available. Their nested nature also allows observation of the change in landscape parameters 
as one moves away from the stream.  Finally, nodes are a direct reflection of the complexity of a 
stream, with more nodes occurring in a more complex drainage system. 
 
It is worth noting that previous studies have utilized the characterization of stream buffer areas rather 
then nodes.  This study chose nodal analysis over a buffer-based one because of some unique features 
of the node-based approach.  Buffers do not capture the complexity of the drainage network in the 
same manner as the nodal approach (e.g., using nodes gives a higher weight to more complex stretches 
of the stream).  It is arguable that in areas of higher drainage complexity, more complex aquatic habitat 
may occur, and landscape parameters in these areas may call for a higher weighting in the final 
analysis.  The nodal approach achieves this weighting, by virtue of the ensuing overlapping of nodal 
circles, as depicted in Figure 9.  
 
Finally, some attribute of the nodes must be selected as an indicator of potential risk to the aquatic 
resource.  Ongoing work has suggested that a threshold of 45% forested land cover in an area is critical 
for maintenance of ecological integrity, for physical, biogeochemical, and biologic functions.  For this 
reason, nodes with less than 45% forested land cover were identified as areas of elevated risk. 
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Figure 9.  Nodes and landscape circles. 

 
8.  Critical Areas in Ridge and Valley Physiographic Province Based on Pixels and Nodes Using 
Spatial Scan Statistic 
  
It is obvious from Figure 10 that further investigation into large hot spots, such as those present in the 
Ridge and Valley analysis, would be informative.  For this reason, a second-level hot spot 
identification was performed.  The results of this second-level hot spot identification, based on both the 
nodal and total disturbed pixels, are depicted in Figures 11.  Two areas require further examination for 
elucidation of the land use patterns driving the critical area determination: 

• The second-level hot spot derived from the use of the nodal information 
• The second-level hot spot derived from the use of disturbed/vulnerable pixel information 

As is evidenced for the Ridge and Valley first-level hot spot, the two analyses provide second-level hot 
spots in different spatial portions of the area.  However, it appears that they are closely related, i.e., the 
hot spot identified by the nodal analysis would be a second cluster identified in the 
disturbed/vulnerable pixel analysis, and vice versa.  This is suggested by the ordinal maps produced by 
each analysis, and presented as Figures 12 and 13.  In general, there is a co-occurrence of high relative 
risk watersheds  
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Figure 10. Ridge and Valley hotspots. 
 

 
Figure 11. Ridge and Valley hotspots within hotspots. 
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Figure 12.  Shaded ordinal view of total pixel hotspot. 

 

 
Figure 13.  Shaded ordinal view of nodal hotspot. 
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from each of the two analyses.  It is of interest, however, to investigate when the two analyses 
converge and depart. 
 
In the second level hot spot identified by the nodal analysis, Figures 14 and 15 present both land cover 
and the occurrence of low and high slope coverage in the individual watersheds.  It is obvious that the 
critical area is dominated by watersheds with an exceedingly high area of the watershed in the low 
slope category, and a general relationship exists between areas of low slope and human activity.  The 
large low slope area is commonly identified as the Great Valley, and the extreme width of the valley 
makes it highly amenable to human activity such as agriculture.  In these watersheds, most of the 
stream convergences of third order or higher will indeed be down on the valley floor, and the nodes 
will be placed there.  The co-occurrence of broad valley floor representing a high percentage of the 
watershed land area, the preferential location of nodes on this valley floor, and the amenability of the 
topography for agricultural land use result in a high level of agreement between the two forms of 
analysis (node vs. pixel-based).  This can be seen when watersheds of high relative risk identified by 
both analyses are located on the ordinal maps and then compared to the corresponding portions of the 
map depicting land use and slope information. 
 
In contrast, the two analyses depart when valley floors are more narrow, and a higher percentage of the 
watershed is covered by forested, high slope areas.  In these instances, the nodes will still be 
concentrated in the narrow valley floor, where human activity is also concentrated, and the watershed 
will be assigned a high relative risk.  However, a relatively low percentage of the watershed area is 
available for human disturbance (due to the presence of forested, high slope ridge areas), and the 
overall low occurrence of disturbed/vulnerable pixels will assign a low relative risk.  A related case of 
departure will occur when some portions of the valley floor are on slopes only slightly above the 3% 
threshold.  In these instances, differences occur between the two analyses, but only slightly (i.e., one 
quintile category difference). 
 
Slightly different patterns of convergence and departure are apparent when investigating the second 
level hot spot determined by the disturbed/vulnerable pixel analysis, although the general patterns 
remain the same.  It is probable that the more even distribution of low, moderate, and high slope areas 
in these watersheds complicates the elucidation of strong patterns.  In general, the ordinal maps from 
the two analyses show general agreement, although some disparity in quintile class is apparent.  
Further investigation into specific land use patterns is necessary in this area. 
 
It should be noted, when interpreting the nodal analysis results, that overlapping of nodes in areas of 
high drainage density is not only possible, but probable.  This can occur most frequently in the Ridge 
and Valley physiographic province, where stream convergences of third order or greater will occur in 
dense patterns on the valley floor.  It follows that the valley floor area, with probable human activity, 
will be over sampled.  It is not clear how this affects the identification of hot spots, although at the 
scale of the 14-digit HUC watersheds utilized in this analysis the effect appears to be minimal. 
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Figure 14.  Land cover and slope class for the nodal hotspot. 

 

 
Figure 15.  Land cover and slope class for the total pixel hotspot. 
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Figure 16.  Frequency histograms showing how the proportions of affected pixels/nodes vary across 
the watersheds.  The diagrams on the left refer to the total pixels analysis, where affected pixels are 
those that are both disturbed and vulnerable.  The diagrams on the right refer to the nodal analysis, 
where affected nodes are those that are disturbed.  The frequency distributions are for all watersheds 
(top), watersheds in the hotspot (middle) and watersheds outside the hotspot (bottom).   
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