Edgeworth expansions for statistics which are functions of lattice and non-lattice variables

Gutti Jogesh Babu
Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

Received March 1990
Revised August 1990

Abstract: Let \(G \) be a distribution function on \(\mathbb{R}^{k+1} \) such that the \((k+1)\)th marginal is lattice. Let \(\overline{Z}_n \) denote the sample mean of \(n \) independent observations from \(G \). For \(s \geq 3 \), the \(s \)-term Edgeworth expansions are obtained for a wide class of statistics which are smooth functions of \(\overline{Z}_n \). The result is then applied to a statistic similar to the Student’s \(t \)-statistic, where the scaling factor, the sample standard deviation is replaced by the more robust mean absolute deviation.

AMS 1980 Subject Classification: 62B20

Keywords: Cramér’s condition, mean absolute deviation, lattice distributions, Edgeworth expansions.

1. Introduction

Consider a \(k + 1 \) variate random vector \(Z = (X, Y) \), where \(X \) is a \(k \)-variate random vector and \(Y \) is a univariate random variable. Let \(Z_i = (X_i, Y_i) \), \(i = 1, \ldots, n \), be \(n \) independent copies of \(Z \). Let \(E(Z) = \nu \) and let \(\overline{Z}_n = (\overline{X}_n, \overline{Y}_n) \) denote the sample mean. Under certain assumptions on the characteristic function of \(Z \), the Edgeworth expansions (EE) for \(P(\sqrt{n} (\overline{Z}_n - \nu) \in A) \) for a fairly rich class of Borel measurable sets \(A \) in \(\mathbb{R}^{k+1} \) are well known. See Bhattacharya and Ranga Rao (1986). When \(Y \) has a lattice distribution, Babu and Singh (1989) have shown that the two term EE for \(T_n = \sqrt{n} (\overline{Z}_n - \nu) + (0, \eta)n^{-3/8} \) is the same as the usual two term expansion in the pure non-lattice case, where \(\eta \) is a univariate random variable having a smooth distribution. As a consequence, if a statistic is a smooth function of \(\overline{Z}_n \) and the lattice part \(\overline{Y}_n \) does not appear in the linear approximation of the function, then the two term formal EE for the statistic is valid. This result on \(T_n \) cannot be extended to obtain more than two terms in the regular EE. However, a modified \(s \)-term EE can be obtained for any \(s \geq 3 \), when enough moments are assumed. Even though this expansion is usually different from the standard expansions, the difference is visible only in the \((k+1)\)th variable. If \(H \) is a smooth function and if \(H \) is four times continuously differentiable, then the formal three term EE for \(\sqrt{n} (H(\overline{Z}_n) - H(\nu)) \) is valid if the \((k+1)\)th variable \(\overline{Y}_n \) does not appear in the linear as well as the quadratic term of the Taylor series expansion of \(H \). This result is applied to the statistic

\[
H_n = \sqrt{n} \left(\overline{W}_n - \mu \right) / M_n
\]

(1.1)

Research supported in part by NSA Grant MDA-904-90-H-1001 and by NSF Grant DMS-9007717.
where \(W_1, \ldots, W_n \) are i.i.d. random variables from a continuous population with mean \(\mu \), \(\overline{W}_n = (1/n) \sum_{i=1}^{n} W_i \) and

\[
M_n = \frac{1}{n} \sum_{i=1}^{n} |W_i - \overline{W}_n|
\]

is the mean absolute deviation.

In Section 2 it is shown that \(H_n \) can be expressed as a smooth function \(H \) of the mean of \((W_i - \mu, |W_i - \mu|, I(W_i \leq \mu)) \) plus a negligible term. Further the lattice variables \(I(W_i \leq \mu) \) do not appear in the first two terms of the Taylor series approximation of \(H \). If the distribution of \(W_1 \) has density in a neighborhood of \(\mu \), then it is easy to see that the distribution of \((W_1 - \mu, |W_1 - \mu|) \) satisfies Cramér's condition. Theorem 2 below is applicable and the formal three term EE for \(H_n \) is valid. The details are given in Section 3.

2. Edgeworth expansions

Let \(Z = (X, Y) \) be a random vector in \(\mathbb{R}^{k+1} \). Let \(\nu = E(Z) \) and let the dispersion \(\Sigma \) of \(Z \) be positive definite. Let \(Z_i = (X_i, Y_i) \) be independent copies of \(Z \). Edgeworth expansions for the distribution of \(\sqrt{n} Z_n \) are well known under Cramér's condition. See Theorem 20.1 of Bhattacharya and Ranga Rao (1986). Let \(E \|Z\|^s < \infty \) for some \(s \geq 3 \). Let \(\xi_{n,s} \) denote the formal \((s-1)\)-term EE of the distribution of \(\sqrt{n} (Z_n - \nu) \). Let \(\phi_\Sigma \) denote the density of a centered normal vector with positive definite dispersion \(\Sigma \). Typically

\[
\xi_{n,s}(x) = \left(1 + \sum_{r=1}^{s-2} n^{-r/2} p_r(x)\right) \phi_\Sigma(x),
\]

where \(p_r \) is a polynomial of degree \(r + 2 \), whose coefficients are functions of moments of \(Z \) of orders \(\alpha = (\alpha_1, \ldots, \alpha_{k+1}) \) with \(\alpha_1 + \cdots + \alpha_{k+1} \leq r + 2 \) and \(\alpha_i \geq 0 \).

To state the results of this section we need some additional notation. For any bounded function \(f \), \(x \in \mathbb{R}^{k+1} \), and \(\delta > 0 \), let

\[
\omega(f, \delta, x) = \sup \{|f(z) - f(x)|: \|x - y\| \leq \delta\}
\]

and

\[
\bar{\omega}(f, \delta, \Sigma) = \int \omega(f, \delta, x) \phi_\Sigma(x) \, dx.
\]

Let \(\eta \) be a symmetric random variable with

\[
E |\eta|^{3(s-1)} < \infty,
\]

whose characteristic function vanishes outside a compact interval. Further we assume that \(\eta \) is independent of the sequence \(\{Z_i\} \). Let

\[
\xi_{n,s}(u, \nu; \eta) = E(\xi_{n,s}(u, \nu - \eta n^{-3/8}))
\]

Finally let \(Q_n \) denote the distribution of

\[
(\sqrt{n} \overline{X}_n, \sqrt{n} \overline{Y}_n + \eta n^{-3/8}) - \sqrt{n} \nu.
\]

Theorem 2.1. Suppose that the distribution of \(X \) satisfies Cramér’s condition

\[
\lim_{\|\nu\| \to \infty} \sup |E(e^{\nu'X})| < 1,
\]

2
and \(Y \) has a lattice distribution. If \(E \| Z \|^s < \infty \) for some \(s \geq 3 \), then for any measurable \(f \) bounded by 1, we have
\[
\left| \int f \, dQ_n - \int f(x) \xi_n(x; \eta) \, dx \right| \leq c\bar{w}(f, 4 e^{-dn}, \Sigma) + o(n^{-(s-2)/2}),
\] (2.7)
where \(c \) and \(d \) are some positive constants independent of \(f \).

Proof. The proof essentially involves expansions of the derivatives of the characteristic function \(\varphi_n \) of \(Q_n \). See proof of Theorem 20.1 of Bhattacharya and Ranga Rao (1986). Let \(\gamma(v) = E(e^{iv\eta}) \) and \(\theta \) denote the characteristic function of \(Z - v \). Clearly,
\[
\varphi_n(u, v) = \theta \left(\frac{u}{\sqrt{n}} \log n, \frac{v}{\sqrt{n}} \right) \gamma\left(\frac{v}{\sqrt{n}} \right).
\]
The derivatives of \(\varphi_n \) can be obtained in the range \(|v| \leq \sqrt{n} / \log n \) and \(|u| \leq \epsilon \sqrt{n} \), for some fixed \(\epsilon > 0 \), as in the proof of Theorem 20.1 of Bhattacharya and Ranga Rao (1986). Under the conditions on \(X \) and \(Y \), it is clear that the dispersion \(\Sigma \) of \(Z \) is positive definite. Since the characteristic function \(\gamma \) of \(\eta \) is 0 outside a compact interval, the derivatives of \(\varphi_n(u, v) \) of orders \(\alpha = (\alpha_1, \ldots, \alpha_{k+1}) \) with \(\alpha_i \geq 0 \) and
\[
\alpha_1 + \cdots + \alpha_{k+1} \leq s
\]
vanish for \(|v| > \sqrt{n} / \log n \). Since
\[
\theta \left(\frac{u}{\sqrt{n}} \log n, \frac{v}{\sqrt{n}} \right) \leq \theta \left(\frac{u}{\sqrt{n}} \log n, \frac{v}{\sqrt{n}} \right) \gamma\left(\frac{v}{\sqrt{n}} \right)
\]
and for any \(\epsilon > 0 \),
\[
\rho_\epsilon = \sup \left\{ \left| E(e^{iv\eta}) \right| : |u| > \epsilon \right\} < 1,
\]
it follows that for all \(n > n_0(\epsilon) \),
\[
\sup \left\{ \left| \theta \left(\frac{u}{\sqrt{n}} \log n, \frac{v}{\sqrt{n}} \right) \right| : |u| > \epsilon \sqrt{n}, \ |v| \leq \sqrt{n} / \log n \right\} \leq \rho_\epsilon + (\log n)^{-1} < \delta_n < 1.
\]
Consequently, it follows that the derivatives of \(\varphi_n(u, v) \) are exponentially decaying in the range \(|v| \leq \sqrt{n} / \log n \) and \(e\sqrt{n} \leq |u| \).

In view of (2.4) we have,
\[
P \left(| \eta | > n^{3/16} \right) \leq n^{-9(t-1)/16} E \left| \eta \right|^3(t-1) = O(n^{-(t-1)/2}).
\] (2.8)
Clearly for any \(m > 0 \),
\[
\int_{\|z\| > \log n} \left| \xi_{n,z}(z) \right| \, dz = O(n^{-m}).
\] (2.9)
Let \(g \) denote the density of \(\eta \). Now (2.8) and (2.9) yield, for any \(\epsilon > 0 \),
\[
\int [\omega(f, \epsilon, (x, y)) \left| \xi_{n,z}(x, y - wn^{-3/8}) \right| g(w) \, dw \, dx \, dy
\]
\[
\leq \int_{|w| \leq n^{-3/16}} \left(\| (x, y - wn^{-3/8}) \| \leq \log n \right) \omega(f, \epsilon, (x, y)) \left| \xi_{n,z}(x, y - wn^{-3/8}) \right| g(w) \, dw \, dx \, dy
\]
\[
+ O(n^{-(t-1)/2})
\]
\[
= O\left(\int_{\|z\| < 2 \log n} \omega(f, 2\epsilon, z) \varphi(z) \exp\left(\frac{1}{2} \left(\|z\Sigma^{-1}\|n^{-3/16}\right) \right) \, dz + O(n^{-(t-1)/2})
\]
\[
= O(n^{-(t-1)/2}) + O(\bar{w}(f, 2\epsilon, \Sigma)).
\] (2.10)

The rest of the proof is similar to that of Theorem 20.1 of Bhattacharya and Ranga Rao (1986). □
Using Theorem 2.1, we obtain a result similar to Theorem 2b of Bhattacharya and Ghosh (1978).

Theorem 2.2. Let H be a real valued function on \mathbb{R}^{k+1} and let all the derivatives of H of orders $\alpha = (\alpha_1, \ldots, \alpha_{k+1})$, with $\alpha_i \geq 0$ and $\alpha_1 + \cdots + \alpha_{k+1} \leq s$, are continuous in a neighborhood of v. Further we assume that the derivatives of H of all orders $(\alpha_1, \ldots, \alpha_{k+1})$ with $\alpha_{k+1} \geq 1$ and $\sum_{i=1}^{k+1} \alpha_i = s - 2$ vanish at v.

Then under the conditions of Theorem 2.1, the formal $(s-1)$-term EE is valid for $\sqrt{n}(H(Z_n) - H(v))$.

Proof. For $z = (z_1, \ldots, z_{k+1})$ and $\alpha = (\alpha_1, \ldots, \alpha_{k+1})$, let

$$z^\alpha = \prod_{i=1}^{k+1} z_i^{\alpha_i}.$$

Let

$$f_n(z) = \sqrt{n} \left(H(v + zn^{-1/2}) - H(v) \right).$$

The $(s-2)$-term Taylor series $T_s(z)$ of $f_n(z)$ does not depend on the $(k+1)$th coordinate v of $z = (u, v)$. As a consequence, for any $|h| \leq n^{3/16}$,

$$f_n(u, v + hn^{-3/8}) = T_s(u, v) + n^{-(s-2)/2} \Sigma'(u, v + n^{-3/8}) l_\alpha + O(n^{-(s-1)/2} \log n)$$

$$= \xi_{n,s}(u, v) + n^{-(s-2)/2} \Sigma'(u, v) l_\alpha + o(n^{-(s-2)/2})$$

$$= f_n(u, v) + o(n^{-(s-2)/2}), \quad \text{(2.11)}$$

where Σ' denotes sum over all $\alpha = (\alpha_1, \ldots, \alpha_{k+1})$ satisfying $\sum_{i=1}^{k+1} \alpha_i = s - 1$ and $\alpha_i \geq 0$, and l_α denotes the αth order derivative of H at v. Observe that by (2.8), (2.9) (2.10) and (2.11),

$$\int_{f_n(u,v) \leq z} \xi_{n,s}(u, v; \eta) \, du \, dv = \int g(\omega) \left(\int_{f_n(u,v+wn^{-3/8}) \leq z} \xi_{n,s}(u, v) \, du \, dv \right) \, d\omega$$

$$= \int_{f_n(u,v) \leq z + o(n^{-(s-2)/2})} \xi_{n,s}(u, v) \, du \, dv + O \left(\int_{|q| > \log n} \phi_{\Sigma}(q) \, dq \right) + O \left(P \left(|\eta| > n^{3/16} \right) \right)$$

$$= \int_{f_n(q) \leq z} \xi_{n,s}(q) \, dq + \int_{|f_n(q) - z| = o(n^{-(s-2)/2})} \phi_{\Sigma}(q) \, dq + o(n^{-(s-2)/2}). \quad \text{(2.12)}$$

The rest of the proof is similar to that of Theorem 2b of Bhattacharya and Ghosh (1978). \[\square \]

3. **An application**

Let W_1, \ldots, W_n be independent random variables with a common continuous distribution F. Let $E(W_i) = \mu$. Instead of Student’s t-statistic consider the more robust statistic

$$H_n = \sqrt{n} \left(\bar{W}_n - \mu \right) / M_n, \quad \text{(3.1)}$$

where

$$M_n = \frac{1}{n} \sum_{i=1}^{n} |W_i - \bar{W}_n|. \quad \text{(3.2)}$$

Herrey (1965) derived the distribution of H_n under normal assumptions using the independence of \bar{W}_n and
If F is not Gaussian, then \bar{W}_n and M_n are no longer independent. In this section we shall derive EE for H_n using Theorem 2.2.

Theorem 3.1. Suppose F is continuously differentiable in a neighborhood of μ and the derivative f of F at μ is non-zero. Further assume that, for some $\beta > 0$, $c > 0$,

$$|f(\mu) - f(x)| \leq c |x - \mu|^{\beta}.$$

If $E(W_1^4) < \infty$, then the formal three term Edgeworth expansion for H_n is valid. That is

$$n\left| P(H_n \leq x) - \Phi_{\sigma_2}(x) - \frac{\alpha}{\sqrt{n}} P_1(x/\sigma) \phi_{\sigma}(x) - \frac{\alpha^2}{n} P_2(x/\sigma) \phi_{\sigma}(x) \right| \to 0$$

uniformly in x, where

$$\alpha = (\text{Var} W_1)^{1/2}/(E |W_1 - \mu|),$$

and Φ_{σ} and ϕ_{σ} denote distribution and density of centered Gaussian variable with variance σ^2. Further P_1 and P_2 are the usual polynomials appearing in the three term EE. See (3.3) and (3.4).

Remark. The coefficients of the polynomials P_1 and P_2 can be obtained by computing the first four approximate cumulants of H_n. It can be shown that

$$P_1(x) = -k_1 + \frac{1}{6}k_3(1 - x^2) \quad \text{(3.3)}$$

and

$$P_2(x) = -\frac{1}{6}k_3x^2 + \frac{1}{6}(3x - x^3)k_4 + \frac{1}{6}(10x^3 - 15x - x^5)k_5^2, \quad \text{(3.4)}$$

where Y_i, U_i and V_i are defined in the proof of Theorem 3.1,

$$k_1 = -E(U_iY_i),$$

$$k_2 = 6E(Y_iV_i) + 6(E(U_iY_i))^2 - 2E(U_iY_i^2) + 3E(U_i^2),$$

$$k_3 = E(Y_i^3) - 6E(U_iY_i)$$

and

$$k_4 = E(Y_i^4) - 3 - 16E(U_iY_i)E(Y_i^3) - 12E(U_iY_i^2) + 24E(V_iY_i) + 12E(U_i^3) + 84(E(U_iY_i))^2.$$
where for some $K > 0$ and $\epsilon > 0$,
\[
P\left(|R_{n1}| > Kn^{-1-\epsilon} \right) = o(n^{-1}).
\]
Consequently,
\[
H_n = S_n + R_{n2},
\]
where
\[
S_n = \sqrt{n} \sigma \bar{Y}_n \left[1 - \bar{U}_n + \bar{V}_n \bar{\psi}_n + (\bar{U}_n)^2 \right],
\]
\[
U_i = \sigma \left(|Y_i| - \sigma^{-1} + (2F(\mu) - 1)Y_i \right), \quad V_i = \sigma \left(2F(\mu) - 2I(Y_i \leq 0) - \tau F(\mu) Y_i \right).
\]
and for some $K > 0$ and $\epsilon > 0$,
\[
P\left(|R_{n2}| > Kn^{-1-\epsilon} \right) = o(n^{-1}).
\]
Clearly,
\[
S_n = \sqrt{n} \left(H(Z_n) - H(E(Z_1)) \right),
\]
where
\[
Z_i = \left(Y_i, |Y_i| - \sigma^{-1}, I(Y_i \leq 0) - F(\mu) \right)
\]
and
\[
H(x, y, z) = \sigma x \left[1 - \sigma y - \sigma x(2F(\mu) - 1) - x(2z + \tau F(\mu)) + \sigma^2 \left(y + x(2F(\mu) - 1) \right)^2 \right].
\]
Note that
\[
E(Z_i) = (0, 0, 0), \quad H(0, 0, 0) = 0,
\]
and that H is a smooth function satisfying the conditions of Theorem 2.2 with $s = 4$. As the distribution of W_i is assumed to have a density in a neighbourhood of μ, it follows that the distribution of $X_1 = (Y_1 / |Y_1|)$ satisfies the Cramér’s condition (2.6). So the formal three term EE is valid for the distribution of H_n. \square

Appendix

Let F_n denote the empirical distribution of W_1, \ldots, W_n.

Lemma. Under the conditions of Theorem 3.1,
\[
M_n = \frac{1}{n} \sum_{i=1}^{n} |W_i - \mu| - 2(F(\mu) - F_n(\mu))(\bar{W}_n - \mu)
\]
\[
+ (\bar{W}_n - \mu)(2F(\mu) - 1) + (\bar{W}_n - \mu)^2 f(\mu) + O(|\bar{W}_n - \mu|^{2+\beta}) + (\bar{W}_n - \mu)R_n \tag{A1}
\]
and
\[
P\left(\sqrt{n} |\bar{W}_n - \mu| > \log n \right) = o(n^{-1}), \tag{A2}
\]
where for some $K > 0$,
\[
P\left(\sqrt{n} |\bar{W}_n - \mu| \leq \log n, |R_n| > K(\log n)n^{-3/4} \right) + O(n^{-2}).
\]
Proof. (A2) is an immediate consequence of Theorem 2 of Michel (1976). Also see Theorem 17.11 of Bhattacharya and Ranga Rao (1986) for a more general and sharper moderate deviation estimate. To prove (A1), we note that for any real \(a \) and \(x \),

\[
|x| - |x - a| = \int_0^a (1 - 2I(x \leq y)) \, dy.
\]

It follows that

\[
M_n - \frac{1}{n} \sum_{i=1}^n |W_i - \mu| = \int_{-\infty}^{\infty} (2F_n(\mu + y) - 1) \, dy
\]

\[
= (W_n - \mu)(2F_n(\mu) - 1) + 2\int_0^{(W_n - \mu)} (F_n(\mu + y) - F_n(\mu)) \, dy
\]

\[
= (W_n - \mu)(2F_n(\mu) - 1) + 2\int_0^{(W_n - \mu)} (F(\mu + y) - F(\mu)) \, dy
\]

\[
+ 2\int_0^{(W_n - \mu)} [F_n(\mu + y) - F(\mu + y) - F_n(\mu) + F(\mu)] \, dy. \quad (A3)
\]

Further

\[
2\int_0^{(W_n - \mu)} (F(\mu + y) - F(\mu)) \, dy = f(\mu)(W_n - \mu)^2 + O\left(\frac{1}{n}\right). \quad (A4)
\]

Using the arguments similar to Bahadur representation of quantiles (see Bahadur, 1966) we obtain for some \(K > 0 \),

\[
P\left(R'_n > K(\log n) n^{-3/4} \right) = o(n^{-1}) \quad (A5)
\]

where

\[
R'_n = \sup \left\{ \left| F_n(\mu + y) - F(\mu + y) - F_n(\mu) + F(\mu) \right| : |y| \sqrt{n} \leq \log n \right\}.
\]

It should be mentioned here that Bahadur (1966) obtained a sharper estimate under the assumption \(\beta = 1 \). For our purpose (A5) is enough, which can be proved assuming only \(\beta > 0 \). The representation (A1) now follows from (A3), (A4) and (A5). This completes the proof. \(\square \)

References

