Consider once again, population level
\[Y = \beta_0 + \beta_1 X + \varepsilon, \quad \varepsilon \text{ independent } X, \quad \text{E}(\varepsilon) = 0, \quad \text{var}(\varepsilon) = \sigma^2 \]
so on the sample
\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \quad \text{with } \varepsilon_i \text{ iid } \sim \varepsilon \]

How would we produce a point-estimate of E(Y|X) i.e. the mean of Y at a given X (within a given X-subpopulation)?

We could use the estimated regression line
\[\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i \quad \text{(fitted value)} \]
but also on non-sample values... in general
\[\hat{Y}(x) = \hat{b}_0 + \hat{b}_1 x \quad \text{(estimate of E(Y|x))} \]
If the model we postulated is correct:

- \(E(\hat{Y}(x)) = E(Y/x) = \beta_0 + \beta_1 x \)

(our estimate does not contain a "systematic error" with respect to what we are trying to estimate…)

- \(\sigma^2_{\hat{Y}(x)} = \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_i (X_i - \bar{x})^2} \right) \sigma^2 \)

(the calculation takes into account the variances of \(b_0 \) and \(b_1 \), that go into \(\hat{Y}(x) = b_0 + b_1 x \)…)

Compare with

- \(\sigma^2_{b_0} = \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (X_i - \bar{x})^2} \right) \sigma^2 \)

clearly so, as \(b_0 = \hat{Y}(0) \)

2
As usual, we can unbiasedly estimate the variance of \(\hat{\theta}(x) \) as:

\[
S^2_{\hat{\theta}(x)} = \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right) s^2
\]

(recall \(s^2 = \text{MSE} \))

and take sq. root \(S_{\hat{\theta}(x)} \) to estimate st. dev.

An interesting point:

\(\sigma_{\hat{\theta}(x)}, \sigma_{\theta}(x) \) and their estimates

\(S_{\hat{\theta}(x)}, S_{\theta}(x) \) depend on how far \(x \) is from the sample mean \(\bar{x} \). The larger is \((x - \bar{x})^2 \), the larger is the variability of our estimate... and its estimate
If we also assume normality of the errors:

\[E \sim N(0, \sigma^2) \] - population

\[E_i \ iid \sim N(0, \sigma^2) \] - sample

we have

\[\hat{\beta}(x) \sim N(\mu(x), \frac{\sigma^2}{\beta + \beta_1 x}) \]

and as usual

\[\frac{\hat{\beta}(x) - \mu(x)}{s_\hat{\beta}(x)} \sim t_{n-2} \]

which we can use to construct confidence intervals
If our model is correct and normality of the errors holds; the interval

\[\hat{y}(x) \pm t_{\alpha} \cdot s_{\hat{y}(x)} \]

will contain the unknown \(E(Y|x) = \beta_0 + \beta_1 x \) with prob. \(1-\alpha \)

Since \(s_{\hat{y}(x)} \) is an increasing function of \((x - \bar{x})^2 \); given the sample X's that go into its calculation, and the level \(1-\alpha \) that gives us the \(t_{\alpha} \) in the formula....

THE INTERVAL WILL BE WIDER THE FURTHER APART \(x \) IS FROM \(\bar{x} \).

As we move away from the "center" of the sample X's \((\bar{x}) \), we need to take wider intervals to achieve the same confidence level
We can construct a "band" about the estimated regression line.

A confidence band for $E(Y|X)$, level $1 - \alpha$

The intervals at various x's are centered at $b_0 + b_1x$... and get wider moving away from \bar{x}.

Compare this with our remark that using the estimated regression line outside the sample range of X might be unsafe!
Up to now we have considered estimating
- by a point $\hat{\theta}(x)$
- by an interval $\hat{\theta}(x) \pm t_\alpha S(x)$

under normality...

How would we predict the value of a new Y-draw from a given X-subpopulation?

Completely different enterprise... we are not trying to make point-estimation or inference on an unknown but fixed quantity (e.g. β_1, or $E(Y|x)$...).

We want to say something -predict- about the value of a further random observation of Y in a certain X-subpop.

Symbol: $Y_{\text{NEW}}(x)$
Notice that if our model is correct:

- \(E(Y_{\text{NEW}}(x)) = \beta_0 + \beta_1 x = E(Y|x) \)
- \(\text{var}(Y_{\text{NEW}}(x)) = \text{var}(Y|x) = \text{var}(E) = \sigma^2 \)

and if the errors are normal:

- \(Y_{\text{NEW}}(x) \sim N\left(E(Y|x), \sigma^2\right) \)

\[\beta_0 + \beta_1 x \]

How could we "point-predict" \(Y_{\text{NEW}}(x) \)?

Cannot do any better than taking

\[\hat{Y}_{\text{NEW}}(x) = \hat{Y}(x) = b_0 + b_1 x \]

\[\text{prediction of the new draw} \quad \uparrow \quad \text{point estimate of its mean} \quad \uparrow \quad \text{along the estimated regression line} \]

8
When we evaluate the variability of this "point-prediction", there are two sources to take into account:

(A) the variability of \(\hat{P}(x) \) itself

i.e. \[\sigma_{\hat{P}(x)}^2 = \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right) \sigma^2 \]

(B) the variability intrinsic in the new draw i.e. \(\sigma^2 \)

assuming the new draw to be independent from the previous \(y_1, \ldots, y_n \) that went into the calculation of \(b_0, b \), and hence \(\hat{P}(x) \)

... we can add (A) and (B) to get

\[\sigma^2 + \sigma_{\hat{P}(x)}^2 = \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right) \sigma^2 \]

\[\uparrow \quad \text{variability in the new draw} \]

\[\uparrow \quad \text{variability in estimating its mean} \]
As usual, this can be unbiasedly estimated as

\[s_{\text{pred}(x)}^2 = \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right) s^2 \]

An important point:

The prediction variability, and its estimate \(s_{\text{pred}(x)}^2 \), likewise the mean-estimate variability \(s_{\hat{y}(x)}^2 \), and its estimate \(s_{\hat{y}(x)}^2 \), depend on \((x - \bar{x})^2\) and GROW AS \(x \) MOVES AWAY FROM \(\bar{x} \).

Moreover: the former exceed the latter by \(\sigma^2 \) \((s^2) \) for estimates...

...because of intrinsic variability in the new draw!
It can be shown that under normality of the errors

\[\frac{\hat{y}(x) - \hat{y}_{\text{new}}(x)}{s_{\text{pred}}(x)} \sim t_{n-2} \]

which we can use to construct a prediction interval: If our model is correct and normality of the errors holds, the interval

\[\hat{y}(x) \pm t_{\alpha} s_{\text{pred}}(x) \]

will contain a new \(y \)-draw from the given \(x \)-subpopulation with prob. 1-\(\alpha \). The interval will be wider the further apart \(x \) is from \(\bar{x} \), and at any \(x \) it will be wider (by \(s \), but under the sq. root...) than the corresponding confidence interval for the mean.
We can construct a prediction band for $y_{new}(x)$ about the estimated regression line, level $1-\alpha$.

The intervals at various x's are centered at $\hat{b} + b_1 x$... and get wider moving away from x. At each x, they are wider than the confidence intervals for the mean.

(Minitab to produce bands?)
Another band (pg 67 of the book) Working-Hotelling confidence band FOR THE WHOLE REGRESSION LINE

On the sample data, construct a region of \(\mathbb{R}^2 \) that, if our model is correct and the errors are normal, covers (entirely) the fixed and unknown regression line \(\beta_0 + \beta_1 x \) with prob. \(1 - \alpha \).

Such region is given by

\[\hat{y}(x) \pm \hat{w}_\alpha \hat{S}(x), \ x \in \mathbb{R} \]

where \(\hat{w}_\alpha = \sqrt{2 \hat{F}_\alpha} \)

- Usual shape (wider as moving away from \(\bar{x} \))
- Slightly wider than level 1-\(\alpha \) confidence band for the mean

\[\hat{F}_{1, n-2} \]

\[\hat{F}_\alpha \]

\[\hat{X} \]

\[\hat{X} \]

\[\beta_0 + \beta_1 x \]

\[\hat{S}(x) \]

\(x \in \mathbb{R} \)
Important: different meaning of level

- level 1-\(\alpha\) confidence band for the mean
 \[\hat{Y}(x) \pm t_{d, \alpha} s_{\hat{Y}(x)}, \ x \in \mathbb{R}^d \]
 at any fixed \(x\), the interval \(\hat{Y}(x) \pm t_{d, \alpha} s_{\hat{Y}(x)} \)
 has level 1-\(\alpha\), i.e. contains the unknown \(E[Y|x]\)
 with pr. 1-\(\alpha\)

- level 1-\(\alpha\) confidence band for whole regression
 line \[\hat{Y}(x) \pm W_d s_{\hat{Y}(x)}, \ x \in \mathbb{R}^d \]
 overall, the region has level 1-\(\alpha\), i.e.
 contains the unknown \(\beta_0 + \beta_1 x\) with prob. 1-\(\alpha\)

The: data examples
Thus: start diagnostics?

14