Assignment 10

Exercise 4.8 Prove that (4.13) implies both (4.12) and (4.14) (the “forward half” of the Lindeberg-Feller Theorem). Use the following steps:

(a) Prove that for any complex numbers a_1, \ldots, a_n and b_1, \ldots, b_n with $|a_i| \leq 1$ and $|b_i| \leq 1$,

$$|a_1 \cdots a_n - b_1 \cdots b_n| \leq \sum_{i=1}^{n} |a_i - b_i|. \quad (4.19)$$

Hint: First prove the identity when $n = 2$, which is the key step. Then use mathematical induction.

Sketch of solution: We proceed by mathematical induction, starting with the case $n = 2$ (notice that the statement is completely trivial for $n = 1$, and we shall see that the induction step requires $n = 2$ anyway).

For $n = 2$, we must prove that $|a_1 a_2 - b_1 b_2| \leq |a_1 - b_1| + |a_2 - b_2|$. This follows immediately from the triangle inequality, together with the fact that $|a_i| \leq 1$ and $|b_i| \leq 1$ for all i:

$$|a_1 a_2 - b_1 b_2| = |a_1 a_2 - b_1 a_2 + b_1 a_2 - b_1 b_2| \leq |a_2||a_1 - b_1| + |b_1||a_2 - b_2| \leq |a_1 - b_1| + |a_2 - b_2|.$$

For a general $n > 2$, we let $c = a_1 a_2 \cdots a_{n-1}$ and $d = b_1 b_2 \cdots b_{n-1}$.

Then the argument for $n = 2$ gives

$$|ca_n - db_n| \leq |c - d| + |a_n - b_n|.$$

By the inductive step, we conclude that

$$|c - d| \leq \sum_{i=1}^{n-1} |a_i - b_i|.$$

Combining the previous two inequalities gives the desired result:

$$|ca_n - db_n| \leq \sum_{i=1}^{n} |a_i - b_i|. \quad 207$$
(b) Prove that
\[
\left| \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| \leq \frac{\epsilon}{s_n^2} \left| Y_{ni}^2 I\{|Y_{ni}| \geq \epsilon s_n \} \right|.
\] (4.20)

Hint: Use the results of Exercise 1.43, parts (c) and (d), to argue that for any \(Y \),
\[
\left| \exp \left\{ \frac{itY_{ni}}{s_n} \right\} - \left(1 + \frac{itY_{ni} - t^2 Y_{ni}^2}{2s_n^2} \right) \right| \leq \left| \frac{tY_{ni}}{s_n} \right|^3 I\left\{|Y_{ni}| < \epsilon s_n \right\} + \left(\frac{tY_{ni}}{s_n} \right)^2 I\{|Y_{ni}| \geq \epsilon s_n \}.
\]

Sketch of solution: Suppose \(t \) is arbitrary and \(\epsilon > 0 \) is fixed. Because \(EY_{ni} = 0 \) and \(|EZ| \leq E|Z| \) for any complex-valued random variable \(Z \) (a fact that is essentially the triangle inequality), we obtain
\[
\left| \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| = \left| E \exp \left\{ \frac{itY_{ni}}{s_n} \right\} - \left(1 + \frac{itY_{ni} - t^2 Y_{ni}^2}{2s_n^2} \right) \right|
\leq E \left| \exp \left\{ \frac{itY_{ni}}{s_n} \right\} - \left(1 + \frac{itY_{ni} - t^2 Y_{ni}^2}{2s_n^2} \right) \right|.
\]

Using parts (c) and (d) of Exercise 1.43, we may argue that (ignoring the factor of 1/6 in part (c) does not change the inequality) for any random variable \(X \),
\[
|\exp\{itX\} - (1 + itX - tX^2/2)| \leq \min\{|tX|^3, |tX|^2\}
= \min\{|tX|^3, |tX|^2\} (I\{|X| < \epsilon\} + I\{|X| \geq \epsilon\})
\leq |tX|^3 I\{|X| < \epsilon\} + (tX)^2 I\{|X| \geq \epsilon\}
\leq \epsilon |t|^3 X^2 + (tX)^2 I\{|X| \geq \epsilon\}.
\]

Now, we let \(X = Y_{ni}/s_n \) and combine the previous two inequalities to conclude that
\[
\left| \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| \leq E \left(\frac{\epsilon |t|^3 Y_{ni}^2}{s_n^2} + \frac{t^2 Y_{ni}^2}{s_n^2} I\{|Y_{ni}| \geq \epsilon s_n \} \right)
\]
\[
= \frac{\epsilon |t|^3 \sigma_{ni}^2}{s_n^2} + \frac{t^2}{s_n^2} E \left(Y_{ni}^2 I\{|Y_{ni}| \geq \epsilon s_n \} \right).
\]

(c) Prove that (4.13) implies (4.14).

Hint: For any \(i \), show that
\[
\frac{\sigma_{ni}^2}{s_n^2} < \epsilon^2 + \frac{E(Y_{ni}^2 I\{|Y_{ni}| \geq \epsilon s_n \})}{s_n^2}.
\]

208
Sketch of solution: For an arbitrary $\delta > 0$—I’ll use δ instead of ϵ because ϵ has already been fixed in part (b)—since

$$Y_{ni}^2 = Y_{ni}^2 I\{|Y_{ni}| < \delta s_n\} + Y_{ni}^2 I\{|Y_{ni}| \geq \delta s_n\} < \delta^2 s_n^2 + Y_{ni}^2 I\{|Y_{ni}| \geq \delta s_n\}$$

taking expectations and dividing by s_n^2 gives

$$\frac{\sigma_{ni}^2}{s_n^2} < \delta^2 + \frac{E(Y_{ni}^2 I\{|Y_{ni}| \geq \delta s_n\})}{s_n^2}.$$

We may take the maximum of each side for all $1 \leq i \leq n$:

$$\max_{1 \leq i \leq n} \frac{\sigma_{ni}^2}{s_n^2} < \delta^2 + \max_{1 \leq i \leq n} \frac{E(Y_{ni}^2 I\{|Y_{ni}| \geq \delta s_n\})}{s_n^2}.$$

But the second term on the right hand side above is certainly less than

$$\frac{1}{s_n^2} \sum_{i=1}^{n} E(Y_{ni}^2 I\{|Y_{ni}| \geq \delta s_n\})$$,

which tends to zero because the Lindeberg condition is satisfied. We conclude that

$$\limsup_n \max_{1 \leq i \leq n} \frac{\sigma_{ni}^2}{s_n^2} \leq \delta^2.$$

Since δ is arbitrary, (4.13) must hold.

(d) Use parts (a) and (b) to prove that, for n large enough so that $t^2 \max_i \sigma_{ni}^2/s_n^2 \leq 1$,

$$\left| \prod_{i=1}^{n} \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| \leq \epsilon |t|^3 + \frac{t^2}{s_n^2} \sum_{i=1}^{n} E(Y_{ni}^2 I\{|Y_{ni}| \geq \epsilon s_n\}).$$

Sketch of solution: Since we know that (4.13) holds, we know that there exists N such that for all $n > N$,

$$t^2 \max_{1 \leq i \leq n} \frac{\sigma_{ni}^2}{s_n^2} \leq 1.$$

Thus, for all $n > N$, we know that

$$\left| 1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right| \leq 1.$$
for all i. Since a characteristic function always has modulus bounded above by 1, we conclude from part (a) that

\[
\left| \prod_{i=1}^{n} \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right| \leq \sum_{i=1}^{n} \left| \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \left(1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right|.
\]

Now we may use part (b) to conclude that

\[
\left| \prod_{i=1}^{n} \phi_{Y_{ni}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right| \leq \sum_{i=1}^{n} \left[\frac{\epsilon \left| t \right|^3 \sigma_{ni}^2}{s_n^2} + \frac{t^2}{s_n} \mathbb{E} \left(Y_{ni}^2 I \{|Y_{ni}| \geq \epsilon s_n\} \right) \right]
\]

\[
= \epsilon \left| t \right|^3 + \frac{t^2}{s_n} \sum_{i=1}^{n} \mathbb{E} \left(Y_{ni}^2 I \{|Y_{ni}| \geq \epsilon s_n\} \right).
\]

(e) Use part (a) to prove that

\[
\left| \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right| \leq \frac{t^4}{4 s_n^4} \sum_{i=1}^{n} \sigma_{ni}^4 \leq \frac{t^4}{4 s_n^2} \max_{1 \leq i \leq n} \sigma_{ni}^2.
\]

Hint: Prove that for $x \leq 0$, $|1 + x - \exp(x)| \leq x^2$.

Sketch of solution: First, we prove that for $x \leq 0$, $|1 + x - \exp(x)| \leq x^2$. If we let $f(x) = 1 + x - \exp(x)$, then clearly $f(0) = 0$. Furthermore, $f'(x) = 1 - \exp(x)$, which is positive for all $x < 0$. Therefore, $f(x)$ is strictly increasing on $(-\infty, 0)$, which means that $f(x) < f(0) = 0$ for $x < 0$. We have just shown that the absolute value of $f(x)$ equals $-f(x)$ for all $x \leq 0$, which means it remains only to prove that $-f(x) \leq x^2$ for all $x \leq 0$.

Equivalently, we must prove that $f(x) + x^2 \geq 0$ for all $x \leq 0$. Here, we note that the derivative of $f(x) + x^2$ equals $f'(x) + 2x$, which is simply $f(x) + x$. We have already shown that $f(x) < 0$ for $x < 0$, so clearly $f(x) + x$ is also negative whenever x is negative. This means that $f(x) + x^2$ is a strictly decreasing function of x^2 on $(-\infty, 0)$, so its value on this interval must always be larger than $f(0) + 0^2 = 0$, which is what was to be proven.

Using an argument similar to the one used in part (d), together with the fact that $|\exp(a)| \leq 1$ is always true for real $a \leq 0$, part (a) allows us to conclude that

\[
\left| \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right| \leq \sum_{i=1}^{n} \left| 1 - \frac{t^2 \sigma_{ni}^2}{2 s_n^2} - \exp \left(\frac{t^2 \sigma_{ni}^2}{2 s_n^2} \right) \right|
\]

210
\[\leq \sum_{i=1}^{n} \frac{t^4 \sigma^4_{n_i}}{4s^4_n}. \]

Now we may use the fact that \(\sigma^4_{n_i} \leq \sigma^2_{n_i} \max_{1 \leq j \leq n} \sigma^2_{n_j} \) to conclude that
\[
\sum_{i=1}^{n} \frac{t^4 \sigma^4_{n_i}}{4s^4_n} \leq \frac{t^4}{4s^2_n} \max_{1 \leq j \leq n} \sigma^2_{n_j} \sum_{i=1}^{n} \frac{\sigma^2_{n_i}}{s^2_n} = \frac{t^4}{4s^2_n} \max_{1 \leq j \leq n} \sigma^2_{n_j}.
\]

(f) Now put it all together. Show that
\[
\left| \prod_{i=1}^{n} \phi_{Y_{n_i}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma^2_{n_i}}{2s^2_n} \right) \right| \to 0,
\]
proving (4.12).

Sketch of solution: By first using the triangle inequality and then combining the results of parts (d) and (e), we may conclude that for \(n > N \),
\[
\left| \prod_{i=1}^{n} \phi_{Y_{n_i}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma^2_{n_i}}{2s^2_n} \right) \right| \leq \epsilon |t|^3 + \frac{t^2}{s^2_n} \sum_{i=1}^{n} \mathbb{E} \left(\frac{Y^2_{n_i} I \{ |Y_{n_i}| \geq \epsilon s_n \} }{s^2_n} \right) + \frac{t^4}{4s^2_n} \max_{1 \leq j \leq n} \sigma^2_{n_j}.
\]
The last two terms on the right go to zero as \(n \to \infty \) because of the Lindeberg condition (4.12) and condition (4.13), respectively. We conclude therefore that
\[
\limsup_{n} \left| \prod_{i=1}^{n} \phi_{Y_{n_i}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma^2_{n_i}}{2s^2_n} \right) \right| \leq \epsilon |t|^3.
\]

But since \(\epsilon \) is arbitrary, we conclude that for any fixed \(t \),
\[
\left| \prod_{i=1}^{n} \phi_{Y_{n_i}} \left(\frac{t}{s_n} \right) - \prod_{i=1}^{n} \exp \left(-\frac{t^2 \sigma^2_{n_i}}{2s^2_n} \right) \right| \to 0. \tag{4.21}
\]

This actually proves the result (!!) because the two functions on the left hand side are the characteristic functions of \(T_n/s_n \) and a standard normal distribution, respectively.
Exercise 4.12 (a) Suppose that X_1, X_2, \ldots are independent and identically distributed with $E X_i = \mu$ and $0 < \text{Var} X_i = \sigma^2 < \infty$. Let a_{n1}, \ldots, a_{nn} be constants satisfying

$$\frac{\max_{i \leq n} a_{ni}^2}{\sum_{j=1}^n a_{nj}^2} \to 0 \text{ as } n \to \infty.$$

Let $T_n = \sum_{i=1}^n a_{ni} X_i$, and prove that $\frac{(T_n - E T_n)}{\sqrt{\text{Var} T_n}} \overset{d}{\to} N(0, 1)$.

Sketch of solution: It suffices to check the Lindeberg condition for the $a_{ni}(X_i - \mu)$. To this end, let $m_n = \max_{1 \leq i \leq n} a_{ni}^2$ and observe that for any $\epsilon > 0$,

$$I\{|a_{ni}(X_i - \mu)| \geq \epsilon s_n\} \leq I\{m_n(X_i - \mu)^2 \geq \epsilon^2 s_n^2\},$$

where as usual s_n^2 is the sum of the variances of the $a_{ni}X_i$. Furthermore, the random variables

$$Y_i \overset{\text{def}}{=} (X_i - \mu)^2 I\{m_n(X_i - \mu)^2 \geq \epsilon^2 s_n^2\}, 1 \leq i \leq n,$$

are i.i.d. Thus, we obtain

$$\frac{1}{s_n^2} \sum_{i=1}^n E[a_{ni}^2(X_i - \mu)^2 I\{|a_{ni}(X_i - \mu)| \geq \epsilon s_n\}] \leq \frac{1}{s_n^2} \sum_{i=1}^n a_{ni}^2 E Y_i \leq \frac{E Y_1}{\sigma^2}.$$

It only remains to show that $E Y_1 \to 0$, which follows from the dominated convergence theorem because $|Y_1| \leq (X_1 - \mu)^2$ and the fact that $Y_1 \overset{P}{\to} 0$ (the latter fact is because the indicator in the definition of Y_i is identically zero with probability approaching one as $n \to \infty$ due to the fact that $s_n^2/m_n \to \infty$).

(b) Reconsider Example 2.22, the simple linear regression case in which

$$\hat{\beta}_{0n} = \sum_{i=1}^n v_i^{(n)} Y_i \text{ and } \hat{\beta}_{1n} = \sum_{i=1}^n w_i^{(n)} Y_i,$$

where

$$w_i^{(n)} = \frac{z_i - \bar{z}_n}{\sum_{j=1}^n (z_j - \bar{z}_n)^2} \text{ and } v_i^{(n)} = \frac{1}{n} - \bar{z}_n w_i^{(n)}$$

for constants z_1, z_2, \ldots. Using part (a), state and prove sufficient conditions on the constants z_i that ensure the asymptotic normality of $\sqrt{n}(\hat{\beta}_{0n} - \beta_0)$ and $\sqrt{n}(\hat{\beta}_{1n} - \beta_1)$. You may assume the results of Example 2.22, where it was shown that $E \hat{\beta}_{0n} = \beta_0$ and $E \hat{\beta}_{1n} = \beta_1$. 212
Sketch of solution: To prove the desired results, we need to show two things: (i) \((\hat{\beta}_0 - \beta_1)/\sqrt{\text{Var} \hat{\beta}_0}\) is asymptotically normal, and (ii) \(\sqrt{n} \text{Var} \hat{\beta}_0\) converges to some nonzero constant (and similar results for \(\hat{\beta}_1\)). For (ii), we may verify that

\[
n \text{Var} \hat{\beta}_0 = \sigma^2 + \frac{n\sigma^2 z^2}{\sum_{j=1}^{n}(z_i - \bar{z}_n)^2} \quad \text{and} \quad n \text{Var} \hat{\beta}_1 = \frac{n\sigma^2}{\sum_{j=1}^{n}(z_i - \bar{z}_n)^2}.
\]

Thus, we conclude that (ii) occurs for \(\beta_1\) and \(\beta_0\) if both \(\frac{1}{n} \sum_{j=1}^{n}(z_i - \bar{z}_n)^2 \to \sigma^2 > 0\) and \(\bar{z}_n \to \mu_z\). For condition (i), it suffices to check that the condition of part (a) is satisfied for the \(v_i^{(n)}\) and the \(w_i^{(n)}\), since each \(Y_i\) is merely a shifted version of the corresponding \(\epsilon_i\) and the \(\epsilon_i\) are i.i.d. For the \(w_i^{(n)}\), a bit of algebra shows that the condition in part (a) is equivalent to

\[
\max_{1 \leq i \leq n}(z_i - \bar{z}_n)^2 \to 0.
\]

Notice that this implies Condition (2.18) and, in combination with \(\bar{z}_n \to \mu_z\), Condition (2.17), which were shown in Example 2.22 to be sufficient for the consistency of \(\hat{\beta}_{1n}\) and \(\hat{\beta}_{0n}\). Furthermore, since we’re already assuming \(\frac{1}{n} \sum_{j=1}^{n}(z_i - \bar{z}_n)^2 \to \sigma^2_2\) to satisfy (ii), we can can rewrite the condition in part (a) as

\[
\frac{\max_{1 \leq i \leq n}(z_i - \bar{z}_n)^2}{n} \to 0, \quad \text{or} \quad \max_{1 \leq i \leq n}(z_i - \bar{z}_n)^2 = o(n).
\]

Similarly, we may show that if \(\max_{1 \leq i \leq n}(z_i - \bar{z}_n)^2 = o(n)\), then

\[
\frac{\max_{1 \leq i \leq n}(v_i^{(n)})^2}{\sum_{j=1}^{n}(v_j^{(n)})^2} \to 0.
\]

(Can you verify this fact?)

Exercise 6.7 Let \(X_1, \ldots, X_n\) be independent uniform(0, 2\(\theta\)) random variables.

(a) Let \(M = (X_{(1)} + X_{(n)})/2\). Find the asymptotic distribution of \(n(M - \theta)\).

Sketch of solution: From Example 6.3, we know that

\[
\frac{n}{2\theta} \left(\begin{array}{c} X_{(1)} \\ 2\theta - X_{(n)} \end{array} \right) \xrightarrow{d} \left(\begin{array}{c} Y_1 \\ Y_2 \end{array} \right),
\]

213
where Y_1 and Y_2 are independent standard exponential variables. This means that

$$n(M - \theta) = \frac{n}{2} [X_{(1)} - (2\theta - X_{(n)})] \overset{d}{\to} \theta(Y_1 - Y_2).$$

The right hand side above, $\theta(Y_1 - Y_2)$, is a double-exponential, or Laplace, distribution centered at zero and with variance $2\theta^2$.

(b) Compare the asymptotic performance of the three estimators M, X_n, and the sample median \tilde{X}_n by considering their relative efficiencies.

Sketch of solution: From part (a), we may approximate the variance of M by the asymptotically-inspired expression $2\theta^2/n^2$. The sample mean, on the other hand, has exactly variance $\theta^2/3n$ because each X_i has variance $(2\theta)^2/12$. Finally, by Theorem 6.7, the sample median satisfies

$$\sqrt{n}(\tilde{X}_n - \theta) \overset{d}{\to} N\left(0, \frac{(2\theta^2)}{4}\right),$$

so as an asymptotic approximation we may write $\text{Var} \tilde{X}_n \approx \theta^2/n$. We conclude that the relative efficiency of M relative to both X_n and \tilde{X}_n goes to infinity as $n \to \infty$, while the relative efficiency of X_n relative to \tilde{X}_n goes to 3.

(c) For $n \in \{101, 1001, 10001\}$, generate 500 samples of size n, taking $\theta = 1$. Keep track of M, X_n, and \tilde{X}_n for each sample. Construct a 3×3 table in which you report the sample variance of each estimator for each value of n. Do your simulation results agree with your theoretical results in part (b)?

Sketch of solution: Below is some R code that summarizes the simulation results. They are very close to the asymptotic approximation in every case.

```r
f <- function(n) {
  x <- 2*runif(n)
  c(M=(min(x)+max(x))/2, Xbar=mean(x), Xtilde=median(x))
}
rbind(n101 = apply(replicate(500, f(101)), 1, var),
      n1001 = apply(replicate(500, f(1001)), 1, var),
      n10001 = apply(replicate(500, f(10001)), 1, var))
```
Exercise 6.10 Suppose X_1, \ldots, X_n is a simple random sample from a distribution that is symmetric about θ, which is to say that $P(X_i \leq x) = F(x - \theta)$, where $F(x)$ is the distribution function for a distribution that is symmetric about zero. We wish to estimate θ by $(Q_p + Q_{1-p})/2$, where Q_p and Q_{1-p} are the p and $1-p$ sample quantiles, respectively. Find the smallest possible asymptotic variance for the estimator and the p for which it is achieved for each of the following forms of $F(x)$:

(a) Standard Cauchy

(b) Standard normal

(c) Standard double exponential

Hint: For at least one of the three parts of this question, you will have to solve for a minimizer numerically.

Sketch of solution: In the case of a distribution that is symmetric about θ, we know that the derivative of the cdf at the true pth quantile ξ_p is the same as at ξ_{1-p}. Therefore, Theorem 6.7 says that

$$\sqrt{n} \left\{ \left(\frac{Q_p}{Q_{1-p}} \right) - \left(\frac{\xi_p}{\xi_{1-p}} \right) \right\} \xrightarrow{d} N \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{p}{F'(\xi_p)^2} \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix} \right\},$$

where p is assumed to be $\leq 1/2$. Furthermore, since $\theta = (\xi_p + x_{1-p})/2$, we conclude that

$$\sqrt{n} \left(\frac{Q_p - Q_{1-p}}{2} - \theta \right) \xrightarrow{d} \frac{p}{2F'(\xi_p)^2},$$

which means that $p/f(\xi_p)^2$ is the function we wish to minimize, where $f(x)$ is the density function in question. For part (c), the function to minimize is $p/p^2 = 1/p$, which is minimized on $(0, 1/2]$ at $p = 1/2$. The minimizing values of p for parts (a) and (b) are given by the R code below.

```r
optimize(function(p) p/(dcauchy(qcauchy(p)))^2, interval=c(0,.5))$min
[1] 0.4435034
optimize(function(p) p/(dnorm(qnorm(p)))^2, interval=c(0,.5))$min
[1] 0.2702512
```