Problem 1. If c is a constant such that $X_n \overset{L}{\rightarrow} c$, prove that $X_n \overset{P}{\rightarrow} c$.

Problem 2. Suppose X_1, X_2, \ldots are iid Bernoulli(p) random variables. Let $S_n = \sum_{i=2}^{n} X_i X_{i-1}$. Find (with justification) the asymptotic distribution of S_n/n.

Problem 3. Either construct an example of each of the following or prove that no such example exists:

(a) [1 point] A sequence X_1, X_2, \ldots of random variables, a random variable X, and a constant x_0 such that $X_n \overset{L}{\rightarrow} X$ and $F_n(x_0) \not\rightarrow F(x_0)$.

(b) [1 point] A sequence X_1, X_2, \ldots of random variables such that $X_n \overset{P}{\rightarrow} 0$ and $E(X_n) \rightarrow 1$.

Problem 4. Let X_1, \ldots, X_n be iid from a continuous symmetric distribution centered at 0. Suppose (Y_1, \ldots, Y_n) is a permutation of (X_1, \ldots, X_n) satisfying $|Y_1| < |Y_2| < \cdots < |Y_n|$; that is, the Y_i are the X_i arranged in order of increasing absolute value.

Let $W_n = \sum_{i=1}^{n} i I\{Y_i > 0\}$ be the usual signed-rank statistic. Derive the asymptotic distribution of W_n, justifying your steps.

[We have seen at least two ways to do this. You may of course use any valid method you choose.]

Problem 5. Suppose X_1, \ldots, X_n are iid random variables with cdf $F(x)$. Let \tilde{X}_n denote the sample median. Suppose we wish to estimate $h(F) = \text{Var}(\tilde{X}_n) < \infty$. We use a bootstrap scheme in which we draw B random samples of size n from \hat{F}_n, the empirical cdf, and let M_i be the sample median of the ith sample, $i = 1, \ldots, B$.

If \overline{M}_B denotes $(1/B) \sum_{i=1}^{B} M_i$, explain (with justification) what happens to

$$\frac{1}{B} \sum_{i=1}^{B} (M_i - \overline{M}_B)^2$$

as $B \rightarrow \infty$.

Problem 6. Suppose X_1, X_2, \ldots are iid Poisson(θ) random variables. Find the asymptotic distribution of $(S_n - E S_n)/\sqrt{\text{Var} S_n}$, where

$$S_n = \sum_{i=2}^{n+1} X_i I\{X_{i-1} = 0\}.$$

The Poisson(θ) distribution has expectation θ, variance θ, and mass function $p(x) = e^{-\theta} \theta^x / x!$ for x a nonnegative integer.
Problem 7
Suppose that \(X_1, \ldots, X_n \) are iid with
\[
P(X_i = 0) = \theta \quad \text{and} \quad P \left(X_i = -\sqrt{1 - \theta} \right) = P \left(X_i = \sqrt{1 - \theta} \right) = \frac{1 - \theta}{2}.
\]

Define \(Y_i = I \{ X_i = 0 \} \).

Let \(Z(i) = (X_i, Y_i) \). Find a function \(g(x, y) = [g_1(x, y), g_2(x, y)] \) that is a variance-stabilizing transformation in the sense that the asymptotic distribution of \(g \left(\overline{Z} \right) - g \left(\text{E}(Z(i)) \right) \) has a covariance matrix that doesn’t depend on \(\theta \), where \(\overline{Z} \) is the sample mean of the \(Z(i) \).

You may find it helpful to know that
\[
\frac{d}{dt} 2 \sin^{-1}(\sqrt{t}) = \frac{1}{\sqrt{t(1-t)}}.
\]

Problem 8
Let \(X_1, \ldots, X_n \) be an iid sample from Beta(\(\alpha, 1 \)); that is, \(f_\alpha (x) = \alpha x^{\alpha - 1} \). You may assume without proof that all relevant regularity conditions apply to the beta distribution.

The Beta(\(\alpha, \beta \)) distribution has expectation \(\alpha / (\alpha + \beta) \), variance \(\alpha \beta / [(1 + \alpha + \beta)(\alpha + \beta)^2] \), and density \(\Gamma(\alpha + \beta)x^{\alpha - 1}(1-x)^{\beta - 1}I \{ 0 < x < 1 \} / \Gamma(\alpha)\Gamma(\beta) \).

(a) Compute a Wald test statistic \(W_n \) that is asymptotically standard normal under \(H_0: \alpha = \alpha_0 \).

(b) Compute a Rao score test statistic \(R_n \) that is asymptotically standard normal under \(H_0: \alpha = \alpha_0 \).

Problem 9
Suppose \(X_1, X_2, \ldots \) are independent with \(X_i \sim \text{Beta}(\alpha_i, \alpha_i) \), where \(0 < \alpha_i < 2 \). Prove that
\[
\frac{\sum_{i=1}^{n} (X_i - \frac{1}{2})}{\sqrt{s_n^2}} \xi N(0, 1),
\]
where \(s_n^2 = \sum_{i=1}^{n} \text{Var}(X_i) \), by verifying the Lindeberg condition or the Lyapunov condition.

The Beta(\(\alpha, \beta \)) distribution has expectation \(\alpha / (\alpha + \beta) \), variance \(\alpha \beta / [(1 + \alpha + \beta)(\alpha + \beta)^2] \), and density \(\Gamma(\alpha + \beta)x^{\alpha - 1}(1-x)^{\beta - 1}I \{ 0 < x < 1 \} / \Gamma(\alpha)\Gamma(\beta) \).

Problem 10
Let \(X_1, \ldots, X_n \) be an iid sample from Poisson(\(\theta \)). Throughout this problem, you may assume that the Poisson distribution satisfies all relevant regularity conditions.

(a) Show that the Jeffreys prior on \((0, \infty) \) is the improper prior density \(\lambda(\theta) = 1/\sqrt{\theta} \). To do this, it suffices to show that \(\lambda(\theta) \) is proportional to \(\sqrt{I(\theta)} \).

The Poisson(\(\theta \)) distribution has expectation \(\theta \), variance \(\theta \), and mass function \(p(x) = e^{-\theta} \theta^x / x! \) for \(x \) a nonnegative integer.

(b) Show that with the improper Jeffreys prior \(\lambda(\theta) = 1/\sqrt{\theta} \), the posterior distribution of \(\theta \) is gamma. Find the Bayes estimator \(\delta_n = \text{E}(\theta | X_1, \ldots, X_n) \) using this prior. Finally, give the asymptotic distribution of \(\sqrt{n}(\delta_n - \theta) \).

The Gamma(\(\alpha, \beta \)) distribution has expectation \(\alpha / \beta \), variance \(\alpha / \beta^2 \), and density \(\beta^\alpha x^{\alpha - 1}e^{-\beta x}I \{ x > 0 \} / \Gamma(\alpha) \).