Question 1 [Section 3.2]. For Exercise 14 on p. 109, assume that instead of \(p(y) = ky \), we have \(p(y) = ky^2 \); that is, the probability that \(y \) forms are required is known to be proportional to \(y^2 \). Answer parts (a), (b), and (c) of Exercise 14 under this assumption.

Question 2 [Section 3.2]. Answer all parts of Exercise 22 on p. 110 under the assumption that the cdf of \(X \) is

\[
F(x) = \begin{cases}
0 & x < 0 \\
.15 & 0 \leq x < 1 \\
.39 & 1 \leq x < 2 \\
.62 & 2 \leq x < 3 \\
.77 & 3 \leq x < 4 \\
.87 & 4 \leq x < 5 \\
.94 & 5 \leq x < 6 \\
.99 & 6 \leq x < 7 \\
1 & 7 \leq x
\end{cases}
\]

Question 3 [Section 3.3]. A small drugstore orders copies of a certain magazine for its magazine rack each week. Let \(X \) equal the number of copies of the magazine that could be sold in a randomly selected week (i.e., \(X \) is the demand for the magazine). Suppose \(X \) has the mass function given in Exercise 34 on p. 119.

Suppose that the store owner pays $1.50 for each magazine and sells the magazines for $2.70 each. Any unsold magazines at the end of the week must be recycled and generate no profit. Suppose that the store owner will order \(k \) magazines next week, where \(k \) is some constant.

(a) Express the profit \(P \) as a function of \(k \) and \(X \). Note that \(P \) is a random variable because it is a function of \(X \). (Also note: \(P \) is not simply \(2.7X - 1.5k \); your answer should involve the expression \(\min\{k, X\} \).)

(b) For each value of \(k \), let \(f(k) \) equal the expected profit. Find \(f(k) \) for \(k = 1, \ldots, 6 \) and express your answer in the form of a table.

(c) How many magazines should the store owner purchase if the goal is to maximize expected profit?

Question 4 [Section 3.3]. In Question 3, calculate \(E(X) \) and \(\text{Var}(X) \). If the drugstore orders 6 magazines each week, find the expectation and variance of the number of magazines that must be recycled.

Question 5 [Section 3.4]. For Exercise 46 on p. 126, find the following values:

(a) \(P(X = 0) \)

(b) \(P(X \leq 3) \)

(c) \(P(X \geq 3) \) (Careful! This isn’t merely 1 minus the answer to part (b).)

(d) \(P(1 \leq X < 3) \)

Question 6 [Section 3.4]. Do Exercise 50 on p. 127.

Question 7 [Section 3.5]. A personnel director will interview 15 job candidates. Suppose that 6 of the candidates have had previous experience. If the personnel director interviews the candidates in random order and 5 interviews are scheduled for the first day, let \(X \) denote the number of first-day interviewees who have had previous experience.

(a) What is the probability that \(x \) of the first-day interviewees have had previous experience? (Note the distinction between \(X \) and \(x \).)

(b) Find the expectation and variance of \(X \).

(c) Suppose that \(Y \) is a binomial \((5, 6/15)\) random variable. How do the expectation and variance of \(Y \) compare to those of \(X \)?