SAMPLE STANDARD DEVIATION

- The sample standard deviation \(s \) is approximately the average distance of observations from their mean.

With this in mind, list the following sets of numbers in order from smallest standard deviation to largest standard deviation.

(a) \{1024, 1026, 1025\}

(b) \{1024, 1026\}

(c) \{78, 78, 78\}

(d) \{1, 10, 100, 1000\}

(e) \{512.4, 512.9, 512.8, 512.5, 512.7, 512.7, 512.6\}

- The variance \(s^2 \) and the standard deviation \(s \) are both measures of spread, but only \(s \) is in the original units.

- To compute \(s \), first compute the mean \(\bar{x} \) and then the variance

\[
s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1},
\]

then take the square root.

- \(s \) is very sensitive to outliers. In other words, one or two observations far from the mean can increase \(s \) dramatically.