How many clusters?
Methods to determine the number of clusters in a data set

Data set: $x_i, i=1...N$ points in \mathbb{R}^T (each coordinate is a feature for the clustering)

Clustering method: hierarchical with given choices of distance (e.g. Euclidean) and link function (e.g. complete); k-means with given choice of distance (e.g. Euclidean); else.

With method and K (# clusters), we obtain a partition of the points: $P(K) = \{C_1...C_K\}$

For instance, fake 2D data set ($n=200$, mixture of four $N(\mu_j, I_2)$)

(Hier and Kmeans give identical results)
Define a measure of “quality” of the partition in K clusters:
Using so-called internal indexes, e.g.

a. dissimilarity/distance within the clusters
b. Silhouettes

Or, making internal use of a so-called external index, measure

c. Stability of the partition with respect to perturbations by deletion
d. Internal reproducibility (predictability) of the partition

Based on the values of this measure on $K = (1), 2...$ use a rule to chose K:

i. The rule can be a simple descriptive criterion

ii. Or it can involve simulating a (null) reference scenario of no-clustering
a. Within cluster dissimilarity/distance

Hierarchical: Dissimilarity levels (heights) at which clusters are formed.

K-means: Within clusters sum of squares (what the algorithm finds a local min for).

\[W(K) = \sum_{j=1}^{K} \sum_{i \in C_j} d^2(x_i; \bar{x}_j) \]

Low values when the partition is good, BUT these are by construction monotone non-increasing (more clusters always makes \(\leq \) within cluster dissimilarity); look for “bends”.

F. Chiaromonte Sp 06
\[H(K) = \gamma(K) \frac{W(K) - W(K+1)}{W(K+1)} \]

Hartigan index, correction \(\gamma(K) = n - K - 1 \)

(corrected) relative improvement when passing from \(K \) to \(K +1 \). High value (right before) followed by low value when the partition is good. NOT monotone.
b. Average Silhouette

\[d_{i,C} = \frac{1}{\#(C)} \sum_{l \in C} d(x_i, x_l) \]

\[a_i = d_{i,C(i)} \quad b_i = \min_{C \neq C(i)} d_{i,C} \]

\[\text{Sil}_i = \frac{b_i - a_i}{\max\{a_i, b_i\}} \]
How well a point is clustered

\[\text{Sil}(K) = \frac{1}{N} \sum_{i=1}^{N} \text{Sil}_i \]
Averaging over points, overall partition quality

High value when the partition is good. NOT monotone.
External Indexes

Measuring the similarity between two partitions P and Q of the same set of points (but can have different number of clusters), e.g. Rand index

$$\text{Rand} = \frac{\# \{(i,l) \text{ together in both } P \text{ and } Q\} + \# \{(i,l) \text{ NOT together in both } P \text{ and } Q\}}{\binom{n}{2}}$$

$$R = \frac{\text{Rand} - E(\text{Rand})}{\text{Max}(\text{Rand}) - E(\text{Rand})}$$

Standardizing to a number in [0,1]. Expectation under random partitions. Max depends on the number of clusters in the two partitions.

Can be used to evaluate a $P(K)$ by consistency with a KNOWN partition Q. Useful in several MA data analyses.

But we can also take another perspective: we adopt an external index (i.e. a measure of similarity between partitions) for internal use... as follows.
c. Stability (to random deletions)

1. For $b=1\ldots B$
 - form a perturbed data set $X(b)$, deleting $f\%$ of the points at random (resample without replacement $(1-f)\%$ of the points).
 - apply the clustering to $X(b)$, obtaining $P(K, X(b))$

2. Compute the similarities

\[
R(K, b) = R(P(K), P(K, X(b))) \quad b = 1\ldots B
\]

or

\[
R(K, b, \tilde{b}) = R(P(K, X(b)), P(K, X(\tilde{b}))) \quad b < \tilde{b} = 1\ldots B
\]

Among perturbed partitions (restrict to $X(b)$’s intersection)

3. Summarize these similarities, e.g. with their median, to get $Stb(K)$.

High value when the partition is good. Not monotone in K (can capture nested cluster structure if it exists).

(see Ben-Hur et al., 2002)
d. Internal reproducibility (predictability)

1. For \(b = 1 \ldots B \)
 - form learn and test data sets \(L(b), T(b) \) splitting the points at random
 - apply the clustering to \(L(b) \), obtaining \(P(K, L(b)) \)
 - use \(P(K, L(b)) \) to train a supervised classifier
 - create a predicted partition \(P^*(K, T(b)) \) applying the classifier to \(T(b) \)
 - apply the clustering to \(T(b) \) obtaining \(P(K, T(b)) \)

2. Compute the similarities
 \[
 R(K, b) = R(P^*(K, T(b)), P(K, T(b))) \quad b = 1 \ldots B
 \]
 Among predicted and actual partition of \(T(b) \)

3. Summarize these similarities, e.g. with their median, to get \(\text{Prd}(K) \).

 High value when the partition is good. Not monotone in \(K \) (can capture nested cluster structure if it exists).

 (see Dudoit and Fridlyand, 2002)
i. Choosing K based on simple descriptive criteria.

- Smallest K after which there is a drop $\geq t$.
- Smallest maximal K within t of the (smallest) maximal K.
For instance:

Silhouette approach \(\hat{K} : \max_K Sil(K) \)

Hartigan approach \(\hat{K} : \text{smallest such that } H(K) \leq \eta \) (e.g. 10)

Stability approach (Ben-Hur et al.) \(\hat{K} : \text{smallest such that } Stb(K+1) \leq \sigma \)
i. Simulating a no-clustering reference scenario

Chose a null distribution on R^T expressing no-clustering, and

1. For $m = 1 \ldots M$
 - draw a data set $X_o(m)$ of size n from the null distribution
 - For $K = (1),2\ldots$ apply the clustering to $X_o(m)$ obtaining $P(K, X_o(m))$

2. Compute the quality statistics

 $qual(K, m) = qual(P(K, X_o(m)) \quad m = 1\ldots M, K = (1),2,\ldots$

 (reproducing the calculations previously described on the actual data set X)

3. For each $K = (1), 2\ldots$ create summaries

 $\bar{q}(K) = \frac{1}{B} \sum_{b=1\ldots B} qual(K, b)$

 $sd(K) = \sqrt{\frac{1}{B-1} \sum_{b=1\ldots B} (qual(K, b) - \bar{q}(K))^2}$

 $p(K) = \frac{1}{B} \# \{b : qual(K, b) \geq qual(K)\}$

 Estimated expected value and variability of the statistic under the null.

 Empirical p-value corresponding to the statistic observed on the actual data
Histogram of qual(K) under the null

Frequency

q-bar(K)

sd(K)

q(K) (observed)

p(k)

Difference or Gap

F. Chiaromonte Sp 06
Now can formulate decision rules for K based on these summaries. For instance

Gap approach (Tibshirani et al., 2001)

$\text{qual}(K) = \log(W(K))$

$\text{gap}(K) = \text{qual}(K) - \bar{q}(K)$

$s\tilde{d}(K) = \gamma sd(K) \text{ correction } \gamma = \sqrt{1 + \frac{1}{M}}$

$K^* : \max_K \text{ gap}(K)$

$\hat{K} : \text{smallest such that } \text{gap}(K) \geq \text{gap}(K^*) - s\tilde{d}(K^*)$

CLEST approach (Dudoit and Fridlyand, 2002)

$\text{qual}(K) = \Prd(K)$

$d(K) = \text{qual}(K) - \bar{q}(K)$

$\hat{K} : \text{among those such that } p(K) \leq \pi, \max_K d(K)$
Important: how does one select the reference distribution?

Most often used no-clustering scenarios, **UNIFORMS**.

On the data (hyper) box, original coordinates

On the data (hyper) box, PCA coordinates – more effective, smaller volume
Useful references:

