Example data sets – already preprocessed

• Yeast cell-cycle data
 ~679 genes (exhibiting periodic behavior)
 15 time points – cdc time course
 no missing entries
 normalized (to green) log-ratios, from spotted arrays
 regular (15) and row-standardized columns (only first 12)
 Spellman et al. (1998)

• Mouse tissues data
 ~459 genes (present in tissues under consideration, sequence info available)
 25 tissues
 no missing entries.
 logs of signals, normalized to overall average, from affy.
 regular and row-standardized columns
 Su et al. (2002)
Principal Components (PCA or equivalently Singular Value Decomposition)

N points in R^T ($N = \# \text{ of genes, } T = \# \text{ of conditions}$)

based on the variability of the data cloud:

- Extract a few basic expression patterns (find a subspace).
- Give a low-dimensional reconstruction of the gene expression profiles (project the points)

- As a “structural summary” of the data
- As a “cleaning” step prior to further analyses

$$P_SX_i = a_{1,i}V_1 + a_{2,i}V_2$$
A k-dimensional projection preserving most of the variability structure of the data cloud.

Spectral decompositions of the covariance matrix

\[S = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})' = \sum_{j=1}^{T} \lambda_j v_j v_j' \]

\(\{v_1 \ldots v_T\} \) Eigenvectors, orthogonal directions ranked in terms of...

\(\lambda_1 \geq \lambda_2 \ldots \geq \lambda_T \) Eigenvectors, variability

\(a_{1,i} = W_{i,1} = v_1' X_i \ldots a_{T,i} = W_{i,T} = v_T' X_i \)

\(S = \text{Span} (v_1 \ldots v_k) \) k-dimensional projection preserving most of the variability structure of the data cloud.

\(P_S X_i = U_i = W_{i,1} v_1 + \ldots + W_{i,k} v_k \)
For both data sets, row (gene) **centering and standardization:**

- eliminate average expression and variation magnitude effects
- restrict analysis to “pure shapes” of gene expression profiles.

Before: cloud variability dominated by average expression magnitude

After: we have “created” a shape; points are on a \((T-1)\)-hyperball surface
How complex is the data? (dimension)

yeast cell cycle data
PC(1,2) ~ 63% ; PC(1,2,3) ~ 74%

mouse tissue data
PC(1,2,3) ~ 47% ; PC(1,2,3,4,5,6) ~ 62%

Basic patterns

(eigenvectors)

Basic patterns

plus another 3 at least
Low dimensional representations (visualization)

(yeast cell cycle data)

(mouse tissue data)

(times)

((the W's)

((the V's))
Identifying genes that “drive” patterns (ranking on projections)

(functions of the W’s)

Genes closest to “pure” cycling behavior?

YLR190W top ORFs
YOR391C
YKR037C
YML058W
YHR005C
YDR191W
YKL185W
YNL058C
YGR042W
YLR326W ...

Genes relevant to brain&spine?

NM_013670 top RefSeqs
NM_019634
NM_019675
NM_053076
NM_020012
NM_053076
NM_024287
NM_018794
NM_019999
NM_023429 ...
Principal components for reducing noise and artifacts

(Yeast cell cycle data: emiliorate dampening in amplitude, and trend…
• dis-synchronization
• expression reaction to synchronization drugs, “crowd” effects?)