The sample space Ω is the set of possible outcomes of an experiment. Points ω in Ω are called sample outcomes, realizations, or elements. Subsets of Ω are called events.

An event is denoted by a capital letter near the beginning of the alphabet (A, B, \ldots). The probability that A occurs is denoted by $P(A)$.

Example. If we toss a coin twice then $\Omega = \{HH, HT, TH, TT\}$. The event that the first toss is heads is $A = \{HH, HT\}$.
Probability satisfies the following elementary properties, called axioms; all other properties can be derived from these.

1. \(0 \leq P(A) \leq 1\) for any event \(A\);
2. \(P(\text{not } A) = 1 - P(A)\);
3. \(P(A \text{ or } B) = P(A) + P(B)\) if \(A\) and \(B\) are mutually exclusive events (i.e. \(A\) and \(B\) cannot both happen simultaneously).

More generally, if \(A\) and \(B\) are any events then

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B). \quad (1)
\]

If \(A\) and \(B\) are mutually exclusive, then
\(P(A \text{ and } B) = 0\) and (1) reduces to axiom 3.
Conditional probability. If B is known to have occurred, then this knowledge may affect the probability of another event A. The probability of A once B is known to have occurred is written $P(A|B)$ and called “the conditional probability of A given B,” or, more simply, “the probability of A given $B.”$ It is defined as

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$ \hspace{1cm} (2)

provided that $P(B) \neq 0$.

Independence. The events A and B are said to be independent if

$$P(A \text{ and } B) = P(A) P(B).$$ \hspace{1cm} (3)

By (2), this implies $P(A|B) = P(A)$ and $P(B|A) = P(B)$. Intuitively, independence means that knowing A has occurred provides no information about whether or not B has occurred and vice-versa.
Random variables

A random variable is the outcome of an experiment (i.e. a random process) expressed as a number. We use capital letters near the end of the alphabet (X, Y, Z, etc.) to denote random variables. Random variables are of two types: discrete and continuous.

Continuous random variables are described by probability density functions (PDF). For example, a normally distributed random variable has a bell-shaped density function like this:

![Bell-shaped density curve](image)

The probability that X falls between any two particular numbers, say a and b, is given by the area under the density curve $f(x)$ between a and b,

$$P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx.$$
The two continuous random variables that we will use most are the normal and the χ^2 (chisquare) distributions. Areas under the normal and χ^2 density functions are tabulated and widely available in textbooks. They can also be computed with statistical computer packages (e.g. Minitab).

Discrete random variables are described by probability mass functions (PMF), which we will also call “distributions.” For a random variable X, we will write the distribution as $f(x)$ and define it to be

$$f(x) = P(X = x).$$

In other words, $f(x)$ is the probability that the random variable X takes the specific value x. For example, suppose that X takes the values 1, 2, and 5 with probabilities $1/4$, $1/4$, and $1/2$ respectively. Then we would say that $f(1) = 1/4$, $f(2) = 1/4$, $f(5) = 1/2$, and $f(x) = 0$ for any x other than 1, 2, or 5:

$$f(x) = \begin{cases} .25 & x = 1, 2 \\ .50 & x = 5 \\ 0 & \text{otherwise} \end{cases}$$
A graph of $f(x)$ has spikes at the possible values of X, with the height of a spike indicating the probability associated with that particular value:

Note that $\sum_x f(x) = 1$ if the sum is taken over all values of x having nonzero probability. In other words, the sum of the heights of all the spikes must equal one.

Joint distribution. Suppose that X_1, X_2, \ldots, X_n are n random variables, and let X be the entire vector

$$X = (X_1, X_2, \ldots, X_n).$$

Let $x = (x_1, x_2, \ldots, x_n)$ denote a particular value that X can take. The joint distribution of X is

$$f(x) = P(X = x) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n).$$
In particular, suppose that the random variables X_1, X_2, \ldots, X_n are _independent and identically distributed_ (iid). Then $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$ are independent events, and the joint distribution is

$$f(x) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = P(X_1 = x_1)P(X_2 = x_2)\cdots P(X_n = x_n) = f(x_1)f(x_2)\cdots f(x_n) = \prod_{i=1}^{n} f(x_i)$$

where $f(x_i)$ refers to the distribution of X_i.

Moments

The _expectation_ of a discrete random variable X is defined to be

$$E(X) = \sum_x x f(x)$$

where the sum is taken over all possible values of X. $E(X)$ is also called the _mean_ of X or the _average_ of X, because it represents the long-run average value if the experiment were repeated infinitely many times.
In the trivial example where X takes the values 1, 2, and 5 with probabilities $1/4$, $1/4$, and $1/2$ respectively, the mean of X is

$$E(X) = 1(.25) + 2(.25) + 5(.5) = 3.25.$$

In calculating expectations, it helps to visualize a table with two columns. The first column lists the possible values x of the random variable X, and the second column lists the probabilities $f(x)$ associated with these values:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.25</td>
</tr>
<tr>
<td>2</td>
<td>.25</td>
</tr>
<tr>
<td>5</td>
<td>.50</td>
</tr>
</tbody>
</table>

To calculate $E(X)$ we merely multiply the two columns together, row by row, and add up the products: $1(.25) + 2(.25) + 5(.5) = 3.25$.

If $g(X)$ is a function of X (e.g. $g(X) = \log X$, $g(X) = X^2$, etc.) then $g(X)$ is also a random variable. It’s expectation is

$$E(g(X)) = \sum_{x} g(x)f(x).$$ \hspace{1cm} (4)
Visually, in the table containing x and $f(x)$, we can simply insert a third column for $g(x)$ and add up the products $g(x)f(x)$. In our example, if $Y = g(X) = X^3$, the table becomes

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$g(x) = x^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.25</td>
<td>$1^3 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>.25</td>
<td>$2^3 = 8$</td>
</tr>
<tr>
<td>5</td>
<td>.50</td>
<td>$5^3 = 125$</td>
</tr>
</tbody>
</table>

and

$$E(Y) = E(X^3) = 1(.25) + 8(.25) + 125(.5) = 64.75.$$

If $Y = g(X) = a + bX$ where a and b are constants, then Y is said to be a **linear function** of X, and $E(Y) = a + bE(X)$. An algebraic proof is

$$E(Y) = \sum_y yf(y)$$

$$= \sum_x (a + bx)f(x)$$

$$= \sum_x af(x) + \sum_x bx f(x)$$

$$= a \sum_x f(x) + b \sum_x xf(x)$$

$$= a \cdot 1 + bE(X).$$
That is, if $g(X)$ is linear, then $E(g(X)) = g(E(X))$. Note, however, that this does not work if the function g is nonlinear. For example, $E(X^2)$ is not equal to $E(X)^2$, and $E(\log X)$ is not equal to $\log E(X)$. To calculate $E(X^2)$ or $E(\log X)$, we need to use (4).

Variance. The variance of a discrete random variable, denoted by $V(X)$, is defined to be

$$V(X) = E((X - E(X))^2) = \sum_x (x - E(X))^2 f(x).$$

That is, $V(X)$ is the average squared distance between X and its mean. Variance is a measure of dispersion, telling us how “spread out” a distribution is. For our simple random variable, the variance is

A slightly easier way to calculate the variance is to use the well-known identity

$$V(X) = E(X^2) - (E(X))^2.$$
Visually, this method requires a table with three columns: x, $f(x)$, and x^2.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.25</td>
<td>$1^2 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>.25</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>5</td>
<td>.50</td>
<td>$5^2 = 25$</td>
</tr>
</tbody>
</table>

First we calculate

$E(X) = 1(.25) + 2(.25) + 5(.50) = 3.25$ and

$E(X^2) = 1(.25) + 4(.25) + 25(.50) = 13.75$. Then

$V(X) = 13.75 - (3.25)^2 = 3.1875$.

It can be shown that if a and b are constants, then

$V(a + bX) = b^2 V(X)$.

In other words, adding a constant a to a random variable does not change its variance, and multiplying a random variable by a constant b causes the variance to be multiplied by b^2.

Another common measure of dispersion is the standard deviation, which is merely the positive square root of the variance,

$$SD(X) = \sqrt{V(X)}.$$
Mean and variance of a sum of random variables.

Expectation is always additive; that is, if X and Y are any random variables, then

$$E(X + Y) = E(X) + E(Y).$$

If X and Y are independent random variables, then their variances will also add:

$$V(X + Y) = V(X) + V(Y) \text{ if } X, Y \text{ independent.}$$

More generally, if X and Y are any random variables, then

$$V(X + Y) = V(X) + V(Y) + 2\text{Cov}(X, Y)$$

where $\text{Cov}(X, Y)$ is the covariance between X and Y,

$$\text{Cov}(X, Y) = E((X - E(X))(Y - E(Y))).$$

If X and Y are independent (or merely uncorrelated) then $\text{Cov}(X, Y) = 0$. This additive rule for variances extends to three or more random variables; e.g.,

$$V(X + Y + Z) = V(X) + V(Y) + V(Z)$$

$$+ 2\text{Cov}(X, Y) + 2\text{Cov}(X, Z) + 2\text{Cov}(Y, Z),$$

with all covariances equal to zero if X, Y, and Z are mutually uncorrelated.